Skip to main content
Log in

CpG or IFN-α are more potent adjuvants than GM-CSF to promote anti-tumor immunity following idiotype vaccine in multiple myeloma

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Idiotype (Id) protein in combination with GM-CSF has been used as vaccines for immunotherapy of patients with myeloma and B-cell tumors and the results have been disappointing. To search for better immune adjuvants to improve the efficacy of Id-based immunotherapy in myeloma, we evaluated and compared the efficacy of vaccination of Id protein in combination with CpG or IFN-α, or GM-CSF as a control, in the 5TGM1 myeloma mouse model. Our results showed that Id vaccine combined with CpG or IFN-α, but not GM-CSF, not only efficiently protected mice from developing myeloma but also eradicated established myeloma. The therapeutic responses were associated with an induction of strong humoral immune responses including anti-Id antibodies, and cellular immune responses including Id- and myeloma-specific CD8+ cytotoxic T lymphocytes (CTLs), CD4+ type-1 T-helper (Th1) cells and memory T cells in mice receiving Id vaccine combined with CpG or IFN-α. Furthermore, Id vaccine combined with CpG or IFN-α induced Id- and tumor-specific memory immune responses that protected surviving mice from tumor rechallenge. Thus, our study clearly shows that CpG or IFN-α are better immune adjuvants than GM-CSF. This information will be important for improving the strategies of Id-based immunotherapy for patients with myeloma and other B-cell tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GM-CSF:

Granulocyte-monocyte colony-stimulating factor

IFN-α:

Interferon-α

CpG:

Synthetic oligodeoxnucleotides containing unmethylated CG dinucleotides

References

  1. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364(11):1046–1060

    Article  PubMed  CAS  Google Scholar 

  2. Kyle RA, Rajkumar SV (2008) Multiple myeloma. Blood 111(6):2962–2972

    Article  PubMed  CAS  Google Scholar 

  3. Yi Q (2009) Novel immunotherapies. Cancer J 15(6):502–510

    Article  PubMed  CAS  Google Scholar 

  4. Yi Q (2003) Immunotherapy in multiple myeloma: current strategies and future prospects. Expert Rev Vaccines 2(3):391–398

    Article  PubMed  CAS  Google Scholar 

  5. Houot R, Levy R (2009) Vaccines for lymphomas: idiotype vaccines and beyond. Blood Rev 23(3):137–142

    Article  PubMed  CAS  Google Scholar 

  6. Wang S, Hong S, Wezeman M, Qian J, Yang J, Yi Q (2007) Dendritic cell vaccine but not idiotype-KLH protein vaccine primes therapeutic tumor-specific immunity against multiple myeloma. Front Biosci 12:3566–3575

    Article  PubMed  CAS  Google Scholar 

  7. Dubensky TW Jr, Reed SG (2010) Adjuvants for cancer vaccines. Semin Immunol 22(3):155–161

    Article  PubMed  CAS  Google Scholar 

  8. Bergenbrant S, Yi Q, Osterborg A, Bjorkholm M, Osby E, Mellstedt H, Lefvert AK, Holm G (1996) Modulation of anti-idiotypic immune response by immunization with the autologous M-component protein in multiple myeloma patients. Br J Haematol 92(4):840–846

    Article  PubMed  CAS  Google Scholar 

  9. Osterborg A, Yi Q, Henriksson L, Fagerberg J, Bergenbrant S, Jeddi-Tehrani M, Ruden U, Lefvert AK, Holm G, Mellstedt H (1998) Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood 91(7):2459–2466

    PubMed  CAS  Google Scholar 

  10. Hansson L, Abdalla AO, Moshfegh A, Choudhury A, Rabbani H, Nilsson B, Osterborg A, Mellstedt H (2007) Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res 13(5):1503–1510

    Article  PubMed  CAS  Google Scholar 

  11. Garrett IR, Dallas S, Radl J, Mundy GR (1997) A murine model of human myeloma bone disease. Bone 20(6):515–520

    Article  PubMed  CAS  Google Scholar 

  12. Mundy G (2001) Preclinical models of bone metastases. Semin Oncol 28(11):2–8

    Article  PubMed  CAS  Google Scholar 

  13. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A, Rajapaksa R, Engleman EG, Blume KG, Levy R (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 6(6):621–627

    Article  PubMed  CAS  Google Scholar 

  14. Kwak LW, Young HA, Pennington RW, Weeks SD (1996) Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc Natl Acad Sci USA 93(20):10972–10977

    Article  PubMed  CAS  Google Scholar 

  15. Wen YJ, Min R, Tricot G, Barlogie B, Yi Q (2002) Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 99(9):3280–3285

    Article  PubMed  CAS  Google Scholar 

  16. Hong S, Qian J, Yang J, Li H, Kwak LW, Yi Q (2008) Roles of idiotype-specific t cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth. Cancer Res 68(20):8456–8464

    Article  PubMed  CAS  Google Scholar 

  17. Massaia M, Borrione P, Battaglio S, Mariani S, Beggiato E, Napoli P, Voena C, Bianchi A, Coscia M, Besostri B, Peola S, Stiefel T, Even J, Novero D, Boccadoro M, Pileri A (1999) Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 94(2):673–683

    PubMed  CAS  Google Scholar 

  18. Bendandi M, Gocke CD, Kobrin CB, Benko FA, Sternas LA, Pennington R, Watson TM, Reynolds CW, Gause BL, Duffey PL, Jaffe ES, Creekmore SP, Longo DL, Kwak LW (1999) Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 5(10):1171–1177

    Article  PubMed  CAS  Google Scholar 

  19. Neelapu SS, Kwak LW, Kobrin CB, Reynolds CW, Janik JE, Dunleavy K, White T, Harvey L, Pennington R, Stetler-Stevenson M, Jaffe ES, Steinberg SM, Gress R, Hakim F, Wilson WH (2005) Vaccine-induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nat Med 11(9):986–991

    PubMed  CAS  Google Scholar 

  20. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF (2001) Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14(4):461–470

    Article  PubMed  CAS  Google Scholar 

  21. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    Article  PubMed  CAS  Google Scholar 

  22. Marrack P, Kappler J, Mitchell T (1999) Type I interferons keep activated T cells alive. J Exp Med 189(3):521–530

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, Sun S, Hwang I, Tough DF, Sprent J (1998) Potent and selective stimulation of memory-phenotype CD8 + T cells in vivo by IL-15. Immunity 8(5):591–599

    Article  PubMed  CAS  Google Scholar 

  24. Cho HJ, Hayashi T, Datta SK, Takabayashi K, Van Uden JH, Horner A, Corr M, Raz E (2002) IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J Immunol 168(10):4907–4913

    PubMed  CAS  Google Scholar 

  25. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K (2005) Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 202(5):637–650

    Article  PubMed  CAS  Google Scholar 

  26. Sikora AG, Jaffarzad N, Hailemichael Y, Gelbard A, Stonier SW, Schluns KS, Frasca L, Lou Y, Liu C, Andersson HA, Hwu P, Overwijk WW (2009) IFN-alpha enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity. J Immunol 182(12):7398–7407

    Article  PubMed  CAS  Google Scholar 

  27. Di Pucchio T, Pilla L, Capone I, Ferrantini M, Montefiore E, Urbani F, Patuzzo R, Pennacchioli E, Santinami M, Cova A, Sovena G, Arienti F, Lombardo C, Lombardi A, Caporaso P, D’Atri S, Marchetti P, Bonmassar E, Parmiani G, Belardelli F, Rivoltini L (2006) Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-alpha results in the activation of specific CD8(+) T cells and monocyte/dendritic cell precursors. Cancer Res 66(9):4943–4951

    Article  PubMed  Google Scholar 

  28. Gutterman JU (1994) Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci USA 91(4):1198–1205

    Article  PubMed  CAS  Google Scholar 

  29. Smalley RV, Andersen JW, Hawkins MJ, Bhide V, O’Connell MJ, Oken MM, Borden EC (1992) Interferon alfa combined with cytotoxic chemotherapy for patients with non-Hodgkin’s lymphoma. N Engl J Med 327(19):1336–1341

    Article  PubMed  CAS  Google Scholar 

  30. Schaar CG, Kluin-Nelemans HC, Te Marvelde C, le Cessie S, Breed WP, Fibbe WE, van Deijk WA, Fickers MM, Roozendaal KJ, Wijermans PW (2005) Interferon-alpha as maintenance therapy in patients with multiple myeloma. Ann Oncol 16(4):634–639

    Article  PubMed  CAS  Google Scholar 

  31. Blade J, San Miguel JF, Escudero ML, Fontanillas M, Besalduch J, Gardella S, Arias J, Garcia-Conde J, Carnero M, Marti JM, Rozman C, Estape J, Montserrat E (1998) Maintenance treatment with interferon alpha-2b in multiple myeloma: a prospective randomized study from PETHEMA (Program for the study and treatment of hematological malignancies, Spanish Society of Hematology). Leukemia 12(7):1144–1148

    Article  PubMed  CAS  Google Scholar 

  32. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522):546–549

    Article  PubMed  CAS  Google Scholar 

  33. Shirota H, Sano K, Hirasawa N, Terui T, Ohuchi K, Hattori T, Shirato K, Tamura G (2001) Novel roles of CpG oligodeoxynucleotides as a leader for the sampling and presentation of CpG-tagged antigen by dendritic cells. J Immunol 167(1):66–74

    PubMed  CAS  Google Scholar 

  34. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 93(7):2879–2883

    Article  PubMed  CAS  Google Scholar 

  35. Sun S, Zhang X, Tough DF, Sprent J (1998) Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 188(12):2335–2342

    Article  PubMed  CAS  Google Scholar 

  36. Stacey KJ, Sweet MJ, Hume DA (1996) Macrophages ingest and are activated by bacterial DNA. J Immunol 157(5):2116–2122

    PubMed  CAS  Google Scholar 

  37. Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM (1997) Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA 94(20):10833–10837

    Article  PubMed  CAS  Google Scholar 

  38. Gendron KB, Rodriguez A, Sewell DA (2006) Vaccination with human papillomavirus type 16 E7 peptide with CpG oligonucleotides for prevention of tumor growth in mice. Arch Otolaryngol Head Neck Surg 132(3):327–332

    Article  PubMed  Google Scholar 

  39. Mukherjee P, Pathangey LB, Bradley JB, Tinder TL, Basu GD, Akporiaye ET, Gendler SJ (2007) MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine 25(9):1607–1618

    Article  PubMed  CAS  Google Scholar 

  40. Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO (2000) Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine 19(4–5):530–537

    Article  PubMed  CAS  Google Scholar 

  41. Radl J, De Glopper ED, Schuit HR, Zurcher C (1979) Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol 122(2):609–613

    PubMed  CAS  Google Scholar 

  42. Asosingh K, Radl J, Van Riet I, Van Camp B, Vanderkerken K (2000) The 5TMM series: a useful in vivo mouse model of human multiple myeloma. Hematol J 1(5):351–356

    Article  PubMed  CAS  Google Scholar 

  43. Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157(5):1840–1845

    PubMed  CAS  Google Scholar 

  44. Halpern MD, Kurlander RJ, Pisetsky DS (1996) Bacterial DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor necrosis factor-alpha. Cell Immunol 167(1):72–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the University of Texas M.D. Anderson Cancer Center, National Cancer Institute grants R01 s (CA96569, CA103978, CA138402, and CA138398) and P50 CA142509, the Leukemia and Lymphoma Society Translational Research Grants, Multiple Myeloma Research Foundation, and Commonwealth Foundation for Cancer Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Qian, J., Li, H. et al. CpG or IFN-α are more potent adjuvants than GM-CSF to promote anti-tumor immunity following idiotype vaccine in multiple myeloma. Cancer Immunol Immunother 61, 561–571 (2012). https://doi.org/10.1007/s00262-011-1123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1123-2

Keywords

Navigation