Skip to main content
Log in

Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P

通过 Lactobacillus plantarum KCCM 11613P 乳杆 菌发酵改善洋甘菊的抗氧化和细胞毒性

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and β-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidative and anticancer products.

摘要

目的

研究洋甘菊(Matricaria chamomilla) 经 Lactobacillus plantarum 乳杆菌发酵,可以改善其抗氧化和细胞 毒性。

方法

通过Folin-Denis 方法测量酚类物质的总含量 (TP);通过二苯代苦味酰肼(DPPH)法和β- 胡萝卜素漂白法评价抗氧化活性;通过MTT 法 测定AGS、HeLa、LoVo、MCF-7 和MRC-5(正 常)细胞的细胞毒性作用。

结论

发酵后洋甘菊的TP 含量从21.75 mg GAE/g 降至 18.76 mg GAE/g(GAE:子酸当量),但是DPPH 自由基清除率在发酵72 h 后比未发酵的高 11.1%。由于发酵期间pH 的降低,在β-胡萝卜素 漂白之后,其抗氧化效果降低。此外,发酵72 h 后的洋甘菊对癌细胞有约95%的细胞毒性作用, 但是MRC-5 细胞的作用不敏感。这些结果表明, 洋甘菊的发酵可用于开发天然抗氧化和抗癌产 品。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batista, A.L.A., Diógenes Alves UchÔa Lins, R., de Souza Coelho, R., et al., 2014. Clinical efficacy analysis of the mouth rinsing with pomegranate and chamomile plant extracts in the gingival bleeding reduction. Complement. Ther. Clin. Pract., 20(1):93–98. http://dx.doi.org/10.1016/j.ctcp.2013.08.002

    Article  PubMed  Google Scholar 

  • Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1):70–76. http://dx.doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  • Bianco, M.I., Lúquez, C., de Jong, L.I.T., et al., 2008. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism. Int. J. Food Microbiol., 121(3):3357–3360. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.008

    Article  Google Scholar 

  • Chang, H., Mi, M., Ling, W., et al., 2008. Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch. Pharm. Res., 31(9):1137–1144. http://dx.doi.org/10.1007/s12272-001-1280-8

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.S., Kim, Y., Han, K.S., et al., 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol., 42(5):452–458. http://dx.doi.org/10.1111/j.1472-765X.2006.01913.x

    Article  CAS  PubMed  Google Scholar 

  • Cvetanovic, A., Švarc-Gajic, J., Maškovic, P., et al., 2015a. Antioxidant and biological activity of chamomile extracts obtained by different techniques: perspective of using superheated water for isolation of biologically active compounds. Ind. Crop. Prod., 65:582–591. http://dx.doi.org/10.1016/j.indcrop.2014.09.044

    Article  CAS  Google Scholar 

  • Cvetanovic, A., Švarc-Gajic, J., Zekovic, Z., et al., 2015b. Comparative analysis of antioxidant, antimicrobiological and cytotoxic activities of native and fermented chamomile ligulate flower extracts. Planta, 242(3):721–732. http://dx.doi.org/10.1007/s00425-015-2308-2

    Article  CAS  PubMed  Google Scholar 

  • Dong, J., Zhao, L., Cai, L., et al., 2014. Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. J. Biosci. Bioeng., 118(4):396–399. http://dx.doi.org/10.1016/j.jbiosc.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  • Dueñas, M., Fernandez, D., Hernandez, T., et al., 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 85(2):297–304. http://dx.doi.org/10.1002/jsfa.1924

    Article  Google Scholar 

  • Durackova, Z., 2010. Some current insights into oxidative stress. Physiol. Res., 59:459–469.

    CAS  PubMed  Google Scholar 

  • Farideh, Z.Z., Bagher, M., Ashraf, A., et al., 2010. Effects of chamomile extract on biochemical and clinical parameters in a rat model of polycystic ovary syndrome. J. Reprod. Infertil., 11(3):169–174.

    PubMed  Google Scholar 

  • Guzelmeric, E., Vovk, I., Yesilada, E., 2014. Development and validation of an HPTLC method for apigenin 7-Oglucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials. J. Pharm. Biomed. Anal., 107(25):108–118. http://dx.doi.org/10.1016/j.jpba.2014.12.021

    PubMed  Google Scholar 

  • Hur, S.J., Lee, S.Y., Kim, Y.C., et al., 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem., 160(1):346–356. http://dx.doi.org/10.1016/j.foodchem.2014.03.112

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, N.A., Mustafa, S., Ismail, A., 2014. Effect of lactic fermentation on the antioxidant capacity of Malaysian herbal teas. Int. Food Res. J., 21(4):1483–1488.

    CAS  Google Scholar 

  • Jo, M.N., Jung, J.E., Lee, J.H., et al., 2014. Cytotoxicity of the white ginseng extract and red ginseng extract treated with partially purified ß-glucosidase from Aspergillus usamii KCTC 6954. Food Sci. Biotechnol., 23(1):215–219. http://dx.doi.org/10.1007/s10068-014-0029-0

    Article  Google Scholar 

  • Koch, C., Reichling, J., Kehm, R., et al., 2008. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses. J. Pharm. Pharmacol., 60(11):1545–1550. http://dx.doi.org/10.1211/jpp.60.11.0017

    Article  CAS  PubMed  Google Scholar 

  • Kotnik, P., Skerget, M., Knez, Z., 2007. Supercritical fluid extraction of chamomile flower heads: comparison with conventional extraction, kinetics and scale-up. J. Supercrit. Fluids, 43(2):192–198. http://dx.doi.org/10.1016/j.supflu.2007.02.005

    Article  CAS  Google Scholar 

  • Lee, J.Y., Hwang, W.I., Lim, S.T., 2004. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol., 93(2-3):409–415. http://dx.doi.org/10.1016/j.jep.2004.04.017

    Article  PubMed  Google Scholar 

  • Li, B., Wang, C.Z., He, T.C., et al., 2010. Antioxidants potentiate American ginseng-induced killing of colorectal cancer cells. Cancer Lett., 289(1):62–70. http://dx.doi.org/10.1016/j.canlet.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  • Lim, Y., Jeong, T., Tyner, A.L., et al., 2007. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by dietary compounds luteolin. Am. J. Physiol. Gastrointest. Liver Physiol., 292(1):66–75. http://dx.doi.org/10.1152/ajpgi.00248.2006

    Article  Google Scholar 

  • Michlmayr, H., Brandes, W., Eder, R., et al., 2011. Characterization of two distinct glycosyl hydrolase family 78 a-L-rhamnosidases from Pediococcus acidilactici. J. Appl. Environ. Microbiol., 77(18):6524–6530. http://dx.doi.org/10.1128/AEM.05317-11

    Article  CAS  Google Scholar 

  • McKay, D.L., Blumberg, J.B., 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 20(8):619–633. http://dx.doi.org/10.1002/ptr.1936

    Article  CAS  PubMed  Google Scholar 

  • Moreno, M.I.N., Isla, M.I., Sampietro, A.R., et al., 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71(1-2):109–114. http://dx.doi.org/10.1016/S0378-8741(99)00189-0

    Article  CAS  PubMed  Google Scholar 

  • Ooi, K.L., Loh, S.I., Tan, M.L., et al., 2015. Growth inhibition of human liver carcinoma HepG2 cells and a-glucosidase inhibitory activity of Murdannia bracteata (C.B. Clarke) Kuntze ex J.K. Morton extracts. J. Ethnopharmacol., 162(13):55–60. http://dx.doi.org/10.1016/j.jep.2014.12.030

    Article  CAS  PubMed  Google Scholar 

  • Othman, A., Ismail, A., Ghani, N.A., et al., 2007. Antioxidant capacity and phenolic content of cocoa beans. Food Chem., 100(4):1523–1530. http://dx.doi.org/10.1016/j.foodchem.2005.12.021

    Article  CAS  Google Scholar 

  • Petroianu, G., Szoke, E., Kalasz, H., et al., 2009. Monitoring by HPLC of chamomile flavonoids exposed to rat liver microsomal metabolism. Open J. Med. Chem., 3:1–7. http://dx.doi.org/10.2174/1874104500903010001

    Article  CAS  Google Scholar 

  • Poyton, R.O., Ball, K.A., Castello, P.R., 2009. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab., 20(7):332–340. http://dx.doi.org/10.1016/j.tem.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  • Pulido, R., Bravo, L., Saura-Calixto, F., 2000. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem., 48(8):3396–3402. http://dx.doi.org/10.1021/jf9913458

    Article  CAS  PubMed  Google Scholar 

  • Reuter, S., Gupta, S.C., Chaturvedi, M.M., et al., 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 49(11):1603–1616. http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006

    CAS  Google Scholar 

  • Santos, M.M., Piccirillo, C., Castro, P.M., et al., 2012. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol., 28(6):2435–2440. http://dx.doi.org/10.1007/s11274-012-1036-z

    Article  CAS  PubMed  Google Scholar 

  • Schraufstätter, I., Hyslop, P.A., Jackson, J.H., et al., 1988. Oxidant-induced DNA damage of target cells. J. Clin. Investig. (Lond.), 82(3):1040–1050. http://dx.doi.org/10.1172/JCI113660

    Article  Google Scholar 

  • Sebai, H., Jabri, M.A., Souli, A., et al., 2014. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J. Ethnopharmacol., 152(2): 327–332. http://dx.doi.org/10.1016/j.jep.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  • Sun, S.Y., Hail, N.Jr., Lotan, R., 2004. Apoptosis as a novel target for cancer chemoprevention. J. Nat. Cancer Inst., 96(9):662–672. http://dx.doi.org/10.1093/jnci/djh123

    Article  CAS  PubMed  Google Scholar 

  • Tadbir, A.A., Pourshahidi, S., Ebrahimi, H., et al., 2015. The effect of Matricaria chamomilla (chamomile) extract in Orabase on minor aphthous stomatitis, a randomized clinical trial. J. Herb. Med., 5(2):71–76. http://dx.doi.org/10.1016/j.hermed.2015.05.001

    Article  Google Scholar 

  • Torino, M.I., Limon, R.I., Martinez-Villaluenga, C., et al., 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem., 136(2):1030–1037. http://dx.doi.org/10.1016/j.foodchem.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  • Vijayababu, M.R., Kanagaraj, P., Arunkumar, A., et al., 2006. Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol. Res., 16(2):67–74.

    CAS  PubMed  Google Scholar 

  • Wang, X., Wei, Y., Yuan, S., et al., 2006. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett., 239(1): 144–150. http://dx.doi.org/10.1016/j.canlet.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Tang, H., Holmes, E., 2004. Metabolomic strategy for the classification and quality control of phytomedicine: a case study of chamomile flower (Matricaria recutita L.). Planta Med., 70(3):250–255. http://dx.doi.org/10.1055/s-2004-815543

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Ji, Y., Park, H., et al., 2014. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel). Int. J. Food Microbiol., 191(17):164–171. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  • Yoon, H.J., Lee, K.A., Lee, J.H., et al., 2015. Effect of fermentation by Bacillus subtilis on antioxidant and cytotoxic activities of black rice bran. Int. J. Food Sci. Technol., 50(3):612–618. http://dx.doi.org/10.1111/ijfs.12693

    Article  CAS  Google Scholar 

  • Zhang, Z., Lv, G., Pan, H., et al., 2012. Production of powerful antioxidant supplements via solid-state fermentatin of wheat (Triticum aestivum Linn.) by Cordyceps militaris. Food Technol. Biotechnol., 50(1):32–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Additional information

Project supported by the Ministry of Agriculture, Food and Rural Affairs (No. 314073-03), the Ministry for Food, Agriculture, Forestry and Fisheries, Korea (No. 614102-2), and the National Research Foundation of Korea (No. 2009-0093824)

ORCID: Hyun-Dong PAIK, http://orcid.org/0000-0001-9891-7703

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, EH., Bae, WY., Eom, SJ. et al. Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P. J. Zhejiang Univ. Sci. B 18, 152–160 (2017). https://doi.org/10.1631/jzus.B1600063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600063

Key words

关键词

CLC number

Navigation