Skip to main content
Log in

Effect of the scale of quantitative trait data on the representativeness of a cotton germplasm sub-core collection

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

A cotton germplasm collection with data for 20 quantitative traits was used to investigate the effect of the scale of quantitative trait data on the representativeness of plant sub-core collections. The relationship between the representativeness of a sub-core collection and two influencing factors, the number of traits and the sampling percentage, was studied. A mixed linear model approach was used to eliminate environmental errors and predict genotypic values of accessions. Sub-core collections were constructed using a least distance stepwise sampling (LDSS) method combining standardized Euclidean distance and an unweighted pair-group method with arithmetic means (UPGMA) cluster method. The mean difference percentage (MD), variance difference percentage (VD), coincidence rate of range (CR), and variable rate of coefficient of variation (VR) served as evaluation parameters. Monte Carlo simulation was conducted to study the relationship among the number of traits, the sampling percentage, and the four evaluation parameters. The results showed that the representativeness of a sub-core collection was affected greatly by the number of traits and the sampling percentage, and that these two influencing factors were closely connected. Increasing the number of traits improved the representativeness of a sub-core collection when the data of genotypic values were used. The change in the genetic diversity of sub-core collections with different sampling percentages showed a linear tendency when the number of traits was small, and a logarithmic tendency when the number of traits was large. However, the change in the genetic diversity of sub-core collections with different numbers of traits always showed a strong logarithmic tendency when the sampling percentage was changing. A CR threshold method based on Monte Carlo simulation is proposed to determine the rational number of traits for a relevant sampling percentage of a sub-core collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biabani, A., Carpenter-Boggs, L., Coyne, C.J., Taylor, L., Smith, J.L., Higgins, S., 2011. Nitrogen fixation potential in global chickpea mini-core collection. Biol. Fertil. Soils, 47(6):679–685. [doi:10.1007/s00374-011-0574-0]

    Article  Google Scholar 

  • Brown, A.H.D., 1995. The Core Collection at the Crossroads. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.H.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.3–19.

    Google Scholar 

  • Campbell, B.T., Saha, S., Percy, R., Frelichowski, J., Jenkins, J.N., Park, W., Mayee, C.D., Gotmare, V., Dessauw, D., Giband, M., 2010. Status of the global cotton germplasm resources. Crop Sci., 50(4):1161–1179. [doi:10.2135/cropsci2009.09.0551]

    Article  Google Scholar 

  • Cheng, Z., Gasic, K., Wang, Z., Chen, X., 2011. Genetic diversity and genetic structure in natural populations of Prunus davidiana germplasm by SSR markers. J. Agric. Sci., 3(4):113–125. [doi:10.5539/jas.v3n4p113]

    Google Scholar 

  • Díez, C.M., Imperato, A., Rallo, L., Barranco, D., Trujillo, I., 2012. Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci., 52(1):211–221. [doi:10.2135/cropsci2011.02.0110]

    Article  Google Scholar 

  • Frankel, O.H., Brown, A.H.D., 1984. Plant Genetics Resources Today: a Critical Appraisal. In: Holden, J.H.W., Williams, J.T. (Eds.), Crop Gentic Resources: Conservation and Evaluation. George Allen and Unwin, London, UK, p.249–257.

    Google Scholar 

  • Hu, J., Zhu, J., Xu, H.M., 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet., 101(1–2):264–268. [doi:10.1007/s001220051478]

    Article  CAS  Google Scholar 

  • Kang, C.W., Kim, S.Y., Lee, S.W., Mathur, P.N., Hodgkin, T., Zhou, M.D., Lee, R.J., 2006. Selection of a core collection of Korean sesame germplasm by a stepwise clustering method. Breed Sci., 56(1):85–91. [doi:10.1270/jsbbs.56.85]

    Article  Google Scholar 

  • Kang, H.M., Sul, J.H., Zaitlen, N.A., Kong, S., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet., 42(4):348–354. [doi:10.1038/ng.548]

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni, V.N., Khadi, B.M., Maralappanavar, M.S., Deshapande, L.A., Narayanan, S., 2009. The worldwide gene pools of Gossypium arboreum L. and G. herbaceum L., and their improvement. Genet. Genom. Cotton, 3(1):69–97. [doi:10.1007/978-0-387-70810-2_4]

    Article  Google Scholar 

  • Li, C.T., Shi, C.H., Wu, J.G., Xu, H.M., Zhang, H.Z., Ren, Y.L., 2004. Methods of developing core collections based on the predicted genotypic value of rice (Oryza sativa L.). Theor. Appl. Genet., 108(6):1272–1276. [doi:10.1007/s00122-003-1536-1]

    Article  Google Scholar 

  • Malosetti, M., Abadie, T., 2001. Sampling strategy to develop a core collection of uruguayan maize landraces based on morphological traits. Genet. Res. Crop Evol., 48(4): 381–390. [doi:10.1023/A:1012003611371]

    Article  Google Scholar 

  • Mei, Y.J., Zhou, J.P., Xu, H.M., Zhu, S.J., 2012. Development of sea island cotton (Gossypium barbadense L.) core collection using genotypic values. Austr. J. Crop Sci., 6(4):673–680.

    Google Scholar 

  • Oliveira, M.F., Nelson, R.L., Geraldi, I.O., Cruz, C.D., de Toledo, J.F.F., 2010. Establishing a soybean germplasm core collection. Field Crops Res., 119(2–3):277–289. [doi:10.1016/j.fcr.2010.07.021]

    Article  Google Scholar 

  • Pino del Carpio, D., Basnet, R.K., de Vos, R.C.H., Maliepaard, C., Visser, R., Bonnema, G., 2011. The patterns of population differentiation in a Brassica rapa core collection. Theor. Appl. Genet., 122(6):1105–1118. [doi:10.1007/s00122-010-1516-1]

    Article  PubMed  Google Scholar 

  • Rao, E.S., Kadirvel, P., Symonds, R.C., Geethanjali, S., Ebert, A.W., 2011. Using SSR markers to map genetic diversity and population structure of solanum pimpinellifolium for development of a core collection. Plant Genet. Res., 10(1):38–48. [doi:10.1017/S1479262111000955]

    Article  Google Scholar 

  • Santesteban, L.G., Miranda, C., Royo, J.B., 2009. Assessment of the genetic and phenotypic diversity maintained in apple core collections constructed by using either agro-morphologic or molecular marker data. Span. J. Agric. Res., 7(3):572–584.

    Google Scholar 

  • Silvar, C., Casas, A.M., Kopahnke, D., Habekusharp, A., Schweizer, G., Gracia, M.P., Lasa, J.M., Molina-Cano, J.L., Igartua, E., Ordon, F., 2010. Screening the spanish barley core collection for disease resistance. Plant Breed., 129(1):45–52. [doi:10.1111/j.1439-0523.2009.01700.x]

    Article  Google Scholar 

  • Smýkal, P., Bačová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A., Pavelek, M., 2011. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor. Appl. Genet., 122(7):1385–1397. [doi:10.1007/s00122-011-1539-2]

    Article  PubMed  Google Scholar 

  • Upadhyaya, H.D., Gowda, C.L.L., Pundir, R.P.S., Reddy, V.G., Singh, S., 2006. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet. Res. Crop Evol., 53(4): 679–685. [doi:10.1007/s10722-004-3228-3]

    Article  Google Scholar 

  • Upadhyaya, H.D., Sarma, N., Ravishankar, C.R., Albrecht, T., Narasimhudu, Y., Singh, S.K., Varshney, S.K., Reddy, V.G., Singh, S., Dwivedi, S.L., 2010. Developing a mini-core collection in finger millet using multilocation data. Crop Sci., 50(5):1924–1931. [doi:10.2135/crop sci2009.11.0689]

    Article  Google Scholar 

  • Wang, C.R., Chen, S., Yu, S., 2011. Functional markers developed from multiple loci in gs3 for fine marker-assisted selection of grain length in rice. Theor. Appl. Genet., 122(5):905–913. [doi:10.1007/s00122-010-1497-0]

    Article  PubMed  Google Scholar 

  • Wang, J.C., Hu, J., Xu, H.M., Zhang, S., 2007. A strategy on constructing core collections by least distance stepwise sampling. Theor. Appl. Genet., 115(1):1–8. [doi:10.1007/s00122-007-0533-1]

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.C., Hu, J., Huang, X.X., Xu, S.C., 2008. Assessment of different genetic distances in constructing cotton core subset by genotypic values. J. Zhejiang University-Sci. B, 9(5):356–362. [doi:10.1631/jzus.B0710615]

    Article  Google Scholar 

  • Wulff, S.S., 2009. Evaluation of the mixed linear model with orthogonalized and studentized residuals. J. Stat. Theory Pract., 3(2):463–476. [doi:10.1080/15598608.2009.10411938]

    Article  Google Scholar 

  • Xu, H.M., Mei, Y.J., Hu, J., Zhu, J., Gong, P., 2006. Sampling a core collection of island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genet. Res. Crop Evol., 53(3):515–521. [doi:10.1007/s10722-004-2032-4]

    Article  Google Scholar 

  • Zeng, L.H., Meredith, W.R., Boykin, D.L., 2011. Germplasm potential for continuing improvement of fiber quality in upland cotton: combining ability for lint yield and fiber quality. Crop Sci., 51(1):60–68. [doi:10.2135/cropsci2010.07.0413]

    Article  Google Scholar 

  • Zhang, J., Wang, Y., Zhang, X.Z., Li, T.Z., Wang, K., Xu, X.F., Han, Z.H., 2010. Sampling strategy to develop a primary core collection of apple cultivars based on fruit traits. Afr. J. Biotechnol., 9(2):123–127.

    Google Scholar 

  • Zhang, Z., Ersoz, E., Lai, C.Q., Todhunter, R.J., Tiwari, H.K., Gore, M.A., Bradbury, P.J., Yu, J., Arnett, D.K., Ordovas, J.M., 2010. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet., 42(4): 355–360. [doi:10.1038/ng.546]

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Weir, B.S., 1996. Diallel analysis for sex-linked and maternal effects. Theor. Appl. Genet., 92(1):1–9. [doi:10.1007/BF00222944]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hu.

Additional information

Project supported by the Special Foundation for Agro-Scientific Research in the Public Interest of China (No. 201203052), the China Postdoctoral Science Foundation (No. 2012M521184), and the Shandong Provincial Natural Science Foundation of China (No. ZR2010CQ016)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Jc., Hu, J., Guan, Yj. et al. Effect of the scale of quantitative trait data on the representativeness of a cotton germplasm sub-core collection. J. Zhejiang Univ. Sci. B 14, 162–170 (2013). https://doi.org/10.1631/jzus.B1200075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200075

Key words

CLC number

Navigation