Skip to main content
Log in

Sampling a Core Collection of Island Cotton (Gossypium barbadense L.) Based on the Genotypic Values of Fiber Traits

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A genetic model, including effects of environments, genotypes, and genotype by environment interaction, was employed to analyze five fiber traits of Island cotton (Gossypium barbadense L.). Genotypic values of 304 accessions were predicted by the adjusted unbiased prediction (AUP). Genetic similarities between different accessions were measured by Mahalanobis distances based on genotypic values. Appropriate sampling strategies, linkage rules in stepwise clustering, and sampling proportion were evaluated. To form a core collection of Island cotton, 60 accessions were sampled by the deviation sampling strategy combined with single linkage rule of hierarchical clustering. The genetic variation and structure captured by the core collection were examined in means, variances, ranges and coefficients of variation, correlation coefficients of quantitative traits, and the accessions distribution plotted by first two principal components between two collections. It was showed that the initial collection was well represented by the core collection for exploiting the Island cotton germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Balakrishnan N.V. Nair T.V. Sreenivasan (2000) ArticleTitleA method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data Genet. Resour. Crop Evol. 47 1–9 Occurrence Handle10.1023/A:1008780526154

    Article  Google Scholar 

  • I.S. Bisht R.K. Mahajan D.P. Patel (1998) ArticleTitleThe use of characterisation data to establish the Indian mungbean core collection and assessment of genetic diversity Genet. Resour. Crop Evol. 45 127–133

    Google Scholar 

  • A.H.D. Brown (1989) ArticleTitleCore collection: a practical approach to genetic resources management Genome 31 818–824

    Google Scholar 

  • A.H.D. Brown J.P. Grace S.S. Speer (1987) ArticleTitleDesignation of a core collection of perennial Glycine Soybean Genet. Newslett. 14 59–70

    Google Scholar 

  • S. Chandra Z. Huaman S. Hari Krishna R. Ortiz (2002) ArticleTitleOptimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data – a simulation study Theor. Appl. Genet. 104 1325–1334 Occurrence Handle1:CAS:528:DC%2BD38XmtlWru7w%3D Occurrence Handle12582588

    CAS  PubMed  Google Scholar 

  • N. Diwan G.R. Bauchan M.S.A. McIntosh (1994) ArticleTitleCore collection for the United States annual Medicago germplasm collection Crop Sci. 34 279–285

    Google Scholar 

  • N. Diwan M.S. McIntosh G.R. Bauchan (1995) ArticleTitleMethods of developing a core collection of annual Medicago species Theor. Appl. Genet. 90 755–761 Occurrence Handle10.1007/BF00222008

    Article  Google Scholar 

  • O.H. Frankel A.H.D. Brown (1984) Current plant genetic resources – a critical appraisal V.L. Chopra B.C. Joshi R.P. Sharma H.C. Bansal (Eds) Genetics: New Frontiers NumberInSeriesVol. IV Oxford & IBH Publ. Co. New Delhi 1–13

    Google Scholar 

  • M. Ghislain D. Zhang D. Fajardo Z. Huamán R.J. Hijmans (1999) ArticleTitleMarker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers Genet. Resour. Crop Evol. 46 547–555 Occurrence Handle10.1023/A:1008724007888

    Article  Google Scholar 

  • J. Hu J. Zhu H.M. Xu (2000) ArticleTitleMethods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops Theor. Appl. Genet. 101 264–268 Occurrence Handle10.1007/s001220051478 Occurrence Handle1:CAS:528:DC%2BD3cXlvVyksbc%3D

    Article  CAS  Google Scholar 

  • Z. Huaman C. Aguilar R. Ortiz (1999) ArticleTitleSelecting a Peruvian sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data Theor. Appl. Genet. 98 840–844

    Google Scholar 

  • E. Igartua M.P. Gracia J.M. Lasa B. Medina J.L. Molina-Cano J.L. Montoya I. Romagosa (1998) ArticleTitleThe Spanish barley core collection Genet. Resour. Crop Evol. 45 475–481 Occurrence Handle10.1023/A:1008662515059

    Article  Google Scholar 

  • M.M. Jane J.M. Rodriguez J. Nienhuis (2000) ArticleTitleDevelopment of an algorithm identifying maximally diverse core collections Genet. Resour. Crop Evol. 47 515–526

    Google Scholar 

  • M. Keuls (1952) ArticleTitleThe use of the “Studentized range” in connection with an analysis of variance Euphytica 1 112–122 Occurrence Handle10.1007/BF01908269

    Article  Google Scholar 

  • H. Levene (1960) Robust tests for equality of variances I. Olkin (Eds) Contributions to Probability and Statistics: Essay in Honour of Harold Hotelling Stanford University Press Stanford 278–292

    Google Scholar 

  • Z. Li H. Zhang Y. Zeng Z. Yang S. Shen C. Sun X. Wang (2002) ArticleTitleStudies on sampling schemes for the establishment of core collection of rice landraces in Yunnan China Genet. Resour. Crop Evol. 49 67–74 Occurrence Handle10.1023/A:1013855216410 Occurrence Handle1:CAS:528:DC%2BD38XoslWgsLk%3D

    Article  CAS  Google Scholar 

  • P.C. Mahalanobis (1936) ArticleTitleOn the generalized distance in statistics Proc. Natl. Inst. Sci. India 2 49–55

    Google Scholar 

  • M. Marcos T. Abadie (2001) ArticleTitleSampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits Genet. Resour. Crop Evol. 48 381–390

    Google Scholar 

  • D. Newman (1939) ArticleTitleThe distribution of range in samples from a normal population expressed in terms of an independent estimate of standard deviation Biometrika 31 20–30

    Google Scholar 

  • H. Ortiz E.N. Ruiz-Tapia A. Mujica-Sanchez (1998) ArticleTitleSampling strategy for a core collection of Peruvian qulnoa germplasm Theor. Appl. Genet. 96 475–483

    Google Scholar 

  • A.P. Rodiño M. Santalla A.M. Ron ParticleDe S.P. Singh (2003) ArticleTitleA core collection of common bean from the Iberian peninsula Euphytica 131 165–175 Occurrence Handle10.1023/A:1023973309788

    Article  Google Scholar 

  • P.L. Spagnoletti Zeuli C.Q. Qualset (1993) ArticleTitleEvaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat Theor. Appl. Genet. 87 295–304

    Google Scholar 

  • H.D. Upadhyaya R. Ortiz P.J. Bramel S. Singh (2002) ArticleTitlePhenotypic diversity for morphological and agronomic characteristics in chickpea core collection Euphytica 123 333–342 Occurrence Handle10.1023/A:1015088417487

    Article  Google Scholar 

  • H.D. Upadhyaya R. Ortiz P.J. Bramel S. Singh (2003) ArticleTitleDevelopment of a groundnut core collection using taxonomical, geographical and morphological descriptors Genet. Resour. Crop Evol. 50 139–148 Occurrence Handle1:CAS:528:DC%2BD3sXjslyit7c%3D

    CAS  Google Scholar 

  • T.J.L. Hintum Particlevan (1999) The general methodology for creating a core collection R.C. Johnson T. Hodgkin (Eds) Core Collections for Today and Tomorrow International Plant Genetic Resources Institute RomeItaly 10–17

    Google Scholar 

  • L.W.D. Raamsdonk Particlevan J. Wijnker (2000) ArticleTitleThe development of a new approach for establishing a core collection using multivariate analyses with tulip as case Genet. Resour. Crop Evol. 47 403–416

    Google Scholar 

  • R. Treuren Particlevan A. Magda R. Hoekstra Th.J.L. Hintum Particlevan (2004) ArticleTitleGenetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection Genet. Resour. Crop Evol. 51 277–290

    Google Scholar 

  • K. Yonezawa T. Nomura H. Morishima (1995) Sampling strategies for use in stratified germplasm collections T. Hodgkin A.H.D. Brown Th.J.L. Hintum Particlevan E.A.V. Morales (Eds) Core Collections of Plant Genetic Resources John Wiley and Sons Chichester, UK 35–53

    Google Scholar 

  • Y. Zewdie N. Tong P. Bosland (2004) ArticleTitleEstablishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions Genet. Resour. Crop Evol. 51 147–151 Occurrence Handle10.1023/B:GRES.0000020858.96226.38

    Article  Google Scholar 

  • X.R. Zhang Y.Z. Zhao Y. Cheng X.Y. Feng Q.Y. Guo M.D. Zhou H. Toby (2000) Genet. Resour. Crop Evol. 47 273–279

    Google Scholar 

  • J. Zhu (1993) ArticleTitleMethods of prediction genotype value and heterosis for offspring of hybrids J. Biomath. 8 32–44

    Google Scholar 

  • J. Zhu B.S. Weir (1996) ArticleTitleDiallel analysis for sex-linked and maternal effects Theor. Appl. Genet. 92 IssueID1 1–9 Occurrence Handle10.1007/BF00222944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Mei, Y., Hu, J. et al. Sampling a Core Collection of Island Cotton (Gossypium barbadense L.) Based on the Genotypic Values of Fiber Traits. Genet Resour Crop Evol 53, 515–521 (2006). https://doi.org/10.1007/s10722-004-2032-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-004-2032-4

Keywords

Navigation