Skip to main content
Log in

Iptakalim, an ATP-sensitive potassium channel opener, confers neuroprotection against cerebral ischemia/reperfusion injury in rats by protecting neurovascular unit cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To investigate the role of iptakalim, an ATP-sensitive potassium channel opener, in transient cerebral ischemia/reperfusion (I/R) injury and its involved mechanisms.

Methods

Intraluminal occlusion of middle cerebral artery (MCAO) in a rat model was used to investigate the effect of iptakalim at different time points. Infarct volume was measured by staining with 2,3,5-triphenyltetrazolium chloride, and immunohistochemistry was used to evaluate the expressions of Bcl-2 and Bax. In vitro, neurovascular unit (NVU) cells, including rat primary cortical neurons, astrocytes, and cerebral microvascular endothelial cells, were cultured and underwent oxygen-glucose deprivation (OGD). The protective effect of iptakalim on NVU cells was investigated by cell viability and injury assessments, which were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and release of lactate dehydrogenase. Caspase-3, Bcl-2 and Bax mRNA expressions were evaluated by real-time polymerase chain reaction (PCR).

Results

Administration of iptakalim 0 or 1 h after reperfusion significantly reduced infarct volumes, improved neurological scores, and attenuated brain edema after cerebral I/R injury. Iptakalim treatment (0 h after reperfusion) also reduced caspase-3 expression and increased the ratio of Bcl-2 to Bax by immunohistochemistry. Iptakalim inhibited OGD-induced cell death in cultured neurons and astrocytes, and lactate dehydrogenase release from cerebral microvascular endothelial cells. Iptakalim reduced mRNA expression of caspase-3 and increased the ratio of Bcl-2 to Bax in NVU cells.

Conclusions

Iptakalim confers neuroprotection against cerebral I/R injury by protecting NVU cells via inhibiting of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Hamid, K.M., Baimbridge, K.G., 1997. The effects of artificial calcium buffers on calcium responses and glutamate-mediated excitotoxicity in cultured hippocampal neurons. Neuroscience, 81(3):673–687. [doi:10.1016/S0306-4522(97)00162-0]

    Article  PubMed  CAS  Google Scholar 

  • Chan, P.H., 1996. Role of oxidants in ischemic brain damage. Stroke, 27(6):1124–1129. [doi:10.1161/01.STR.27.6.1124]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.P., Qiu, C.R., Wang, H., 2004. Cardiovascular pharmacological characterization of novel 2,3-dimethyl-2-butylamine derivatives in rats. Life Sci., 75(17): 2131–2142. [doi:10.1016/j.lfs.2004.06.003]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.P., Cui, W.Y., Wang, H., 2006. Selective actions of iptakalim on the subtypes of KATP channels. Chin. Pharmacol. Bull, 22(3):278–284.

    CAS  Google Scholar 

  • Diarra, A., Sheldon, C., Brett, C.L., Baimbridge, K.G., Church, J., 1999. Anoxia-evoked intracellular pH and Ca2+ concentration changes in cultured postnatal rat hippocampal neurons. Neuroscience, 93(3):1003–1016. [doi:10.1016/S0306-4522(99)00230-4]

    Article  PubMed  CAS  Google Scholar 

  • Domoki, F., Kis, B., Nagy, K., Farkas, E., Busija, D.W., Bari, F., 2005. Diazoxide preserves hypercapnia-induced arteriolar vasodilation after global cerebral ischemia in piglets. Am. J. Physiol., 289(1):H368–H373. [doi:10.1152/ajpheart.00887.2004]

    CAS  Google Scholar 

  • Dunn-Meynell, A.A., Rawson, N.E., Levin, B.E., 1998. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res., 814(1–2):41–54. [doi:10.1016/S0006-8993(98)00956-1]

    Article  PubMed  CAS  Google Scholar 

  • Girn, H.R., Ahilathirunayagam, S., Mavor, A.I., Homer-Vanniasinkam, S., 2007. Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovascular Surg., 41(4): 277–293. [doi:10.1177/1538574407304510]

    Article  PubMed  Google Scholar 

  • Graham, S.H., Chen, J., 2001. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab., 21(2): 99–109. [doi:10.1097/00004647-200102000-00001]

    Article  PubMed  CAS  Google Scholar 

  • Green, D.R., Reed, J.C., 1998. Mitochondria and apoptosis. Science, 281(5381):1309–1312. [doi:10.1126/science.281.5381.1309]

    Article  PubMed  CAS  Google Scholar 

  • Hamprecht, B., Löffler, F., 1985. Primary glial cultures as a model for studying hormone action. Methods Enzymol., 109:341–345. [doi:10.1016/0076-6879(85)09097-8]

    Article  PubMed  CAS  Google Scholar 

  • Hu, X.L., Olsson, T., Johansson, I.M., Brannstrom, T., Wester, P., 2004. Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with Smac/Diablo mitochondrial release after photothrombotic ring stroke in rats. Eur. J. Neurosci., 20(5):1177–1188. [doi:10.1111/j.1460-9568.2004.03554.x]

    Article  PubMed  Google Scholar 

  • Janigro, D., West, G.A., Gordon, E.L., Winn, H.R., 1993. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am. J. Physiol., 265(3 Pt 1): C812–C821.

    PubMed  CAS  Google Scholar 

  • Kis, B., Kaiya, H., Nishi, R., Deli, M.A., Abraham, C.S., Yanagita, T., Isse, T., Gotoh, S., Kobayashi, H., Wada, A., et al., 2002. Cerebral endothelial cells are a major source of adrenomedullin. J. Neuroendocrinol., 14(4):283–293. [doi:10.1046/j.1365-2826.2002.00778.x]

    Article  PubMed  CAS  Google Scholar 

  • Kis, B., Snipes, J.A., Simandle, S.A., Busija, D.W., 2005. Acetaminophen-sensitive prostaglandin production in rat cerebral endothelial cells. Am. J. Physiol., 288(4): R897–R902. [doi:10.1152/ajpregu.00613.2004]

    CAS  Google Scholar 

  • Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., 2001. Mitochondrial permeability transition and oxidative stress. FEBS Lett., 495(1–2):12–15. [doi:10.1016/S0014-5793(01)02316-X]

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., 2003. Mitochondrial control of apoptosis: an introduction. Biochem. Biophys. Res. Commun., 304(3): 433–435. [doi:10.1016/S0006-291X(03)00614-4]

    Article  PubMed  CAS  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., 1997. Cytochrome C and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4): 479–489. [doi:10.1016/S0092-8674(00)80434-1]

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Chopp, M., Jiang, N., Yao, F., Zaloga, C., 1995. Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab., 15(3):389–397. [doi:10.1038/jcbfm.1995.49]

    Article  PubMed  CAS  Google Scholar 

  • Linnik, M.D., Zobrist, R.H., Hatfield, M.D., 1993. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke, 24(12):2002–2008; discussion 2008–2009. [doi:10.1161/01.STR.24.12.2002]

    Article  PubMed  CAS  Google Scholar 

  • Liss, B., Bruns, R., Roeper, J., 1999. Alternative sulfonylurea receptor expression defines metabolic sensitivity of KATP channels in dopaminergic midbrain neurons. EMBO J., 18(4):833–846. [doi:10.1093/emboj/18.4.833]

    Article  PubMed  CAS  Google Scholar 

  • Lo, E.H., Rosenberg, G.A., 2009. The neurovascular unit in health and disease: introduction. Stroke, 40(3):S2–S3. [doi:10.1161/STROKEAHA.108.534404]

    Article  PubMed  Google Scholar 

  • Makins, R., Ballinger, A., 2003. Gastrointestinal side effects of drugs. Expert Opin. Drug Saf., 2(4):421–429. [doi:10.1517/14740338.2.4.421]

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., Duan, W., Pedersen, W.A., Culmsee, C., 2001. Neurodegenerative disorders and ischemic brain diseases. Apoptosis, 6(1–2):69–81. [doi:10.1023/A:1009676112184]

    Article  PubMed  CAS  Google Scholar 

  • Mederos y Schnitzler, M., Derst, C., Daut, J., Preisig-Müller, R., 2000. ATP-sensitive potassium channels in capillaries isolated from guinea-pig heart. J. Physiol., 525(2): 307–317. [doi:10.1111/j.1469-7793.2000.t01-1-00307.x]

    Article  PubMed  Google Scholar 

  • Roof, R.L., Schielke, G.P., Ren, X., Hall, E.D., 2001. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke, 32(11):2648–2657. [doi:10.1161/hs1101.097397]

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Sasaki, N., O’Rourke, B., Marban, E., 2000. Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J. Am. Coll. Cardiol., 35(2):514–518. [doi:10.1016/S0735-1097(99)00552-5]

    Article  PubMed  CAS  Google Scholar 

  • Seino, S., Miki, T., 2004. Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice. J. Physiol., 554(2):295–300. [doi:10.1113/jphysiol.2003.047175]

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, K., Lacza, Z., Rajapakse, N., Horiguchi, T., Snipes, J., Busija, D.W., 2002. MitoKATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am. J. Physiol., 283(3):H1005–H1011. [doi:10.1152/ajpheart.00054.2002]

    CAS  Google Scholar 

  • Simard, J.M., Chen, M., 2004. Regulation by sulfanylurea receptor type 1 of a non-selective cation channel involved in cytotoxic edema of reactive astrocytes. J. Neurosurg. Anesthesiol., 16(1):98–99. [doi:10.1097/00008506-200401000-00021]

    Article  PubMed  Google Scholar 

  • Swanson, R.A., Sharp, F.R., 1994. Infarct measurement methodology. J. Cereb. Blood Flow Metab., 14(4): 697–698. [doi:10.1038/jcbfm.1994.88]

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya, D., Hong, S., Matsumori, Y., Shiina, H., Kayama, T., Swanson, R.A., Dillman, W.H., Liu, J., Panter, S.S., Weinstein, P.R., 2003. Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J. Cereb. Blood Flow Metab., 23(6):718–727. [doi:10.1097/01.WCB.0000054756.97390.F7]

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Zhang, Y.L., Tang, X.C., Feng, H.S., Hu, G., 2004. Targeting ischemic stroke with a novel opener of ATP-sensitive potassium channels in the brain. Mol. Pharmacol., 66(5):1160–1168. [doi:10.1124/mol.104.003178]

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Tang, Y., Wang, L., Long, C.L., Zhang, Y.L., 2007. ATP-sensitive potassium channel openers and 2,3-dimethyl-2-butylamine derivatives. Curr. Med. Chem., 14(2):133–155. [doi:10.2174/092986707779313390]

    Article  PubMed  Google Scholar 

  • Yamada, K., Ji, J.J., Yuan, H., Miki, T., Sato, S., Horimoto, N., Shimizu, T., Seino, S., Inagaki, N., 2001. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science, 292(5521):1543–1546. [doi: 10.1126/science.1059829]

    Article  PubMed  CAS  Google Scholar 

  • Yanamoto, H., Nagata, I., Hashimoto, N., Kikuchi, H., 1998. Three-vessel occlusion using a micro-clip for the proximal left middle cerebral artery produces a reliable neocortical infarct in rats. Brain Res. Brain Res. Protoc., 3(2): 209–220. [doi:10.1016/S1385-299X(98)00042-7]

    Article  PubMed  CAS  Google Scholar 

  • Yang, G.Y., Betz, A.L., 1994. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke, 25(8):1658–1664; discussion 1664–1655. [doi:10.1161/01.STR.25.8.1658]

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Feig, J.E., Morrissey, A., Ghiu, I.A., Artman, M., Coetzee, W.A., 2004. KATP channels of primary human coronary artery endothelial cells consist of a heteromultimeric complex of Kir6.1, Kir6.2, and SUR2B subunits. J. Mol. Cell. Cardiol., 37(4):857–869. [doi:10.1016/j.yjmcc.2004.05.022]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Zhou, F., Ding, J.H., Zhou, X.Q., Sun, X.L., Hu, G., 2007. ATP-sensitive potassium channel opener iptakalim protects against MPP-induced astrocytic apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. J. Neurochem., 103(2):569–579. [doi:10.1111/j.1471-4159.2007.04775.x]

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H.L., Luo, W.Q., Wang, H., 2008. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels. Neuroscience, 157(4):884–894. [doi:10.1016/j.neuroscience.2008.09.033]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ran, Yh., Wang, H. Iptakalim, an ATP-sensitive potassium channel opener, confers neuroprotection against cerebral ischemia/reperfusion injury in rats by protecting neurovascular unit cells. J. Zhejiang Univ. Sci. B 12, 835–845 (2011). https://doi.org/10.1631/jzus.B1100067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100067

Key words

CLC number

Navigation