Skip to main content
Log in

Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Numerous neurological disorders share a fatal pathologic process known as glutamate excitotoxicity. Among which, ischemic stroke is the major cause of mortality and disability worldwide. For a long time, the main idea of developing anti-excitotoxic neuroprotective agents was to block glutamate receptors. Despite this, there has been little successful clinical translation to date. After decades of “neuron-centered” views, a growing number of studies have recently revealed the importance of non-neuronal cells. Glial cells, cerebral microvascular endothelial cells, blood cells, and so forth are extensively engaged in glutamate synthesis, release, reuptake, and metabolism. They also express functional glutamate receptors and can listen and respond for fast synaptic transmission. This broadens the thoughts of developing excitotoxicity antagonists. In this review, the critical contribution of non-neuronal cells in glutamate excitotoxicity during ischemic stroke will be emphasized in detail, and the latest research progress as well as corresponding therapeutic strategies will be updated at length, aiming to reconceptualize glutamate excitotoxicity in a non-neuronal perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

IS:

Ischemic stroke

AIS:

Acute ischemic stroke

FCI:

Focal cerebral ischemia

tPA:

Tissue-type plasminogen activator

Neu2000:

Nelonemdaz

NA-1:

Nerinetide

BBB:

Blood-brain barrier

NMDAR:

NMDA receptor

ROS:

Reactive oxygen species

ECs:

Endothelial cells

BMECs:

Brain microvascular endothelial cells

MBMECs:

Mouse brain microvascular endothelial cells

CNS:

Central nervous system

EAAs:

Excitatory amino acids

EAATs:

Excitatory amino acid transporters

α-KG:

α-Ketoglutarate

MCT-1:

Monocarboxylic acid transport 1

GDH:

Glutamate dehydrogenase

GLS:

Glutaminase

ER:

Endoplasmic reticulum

ICW:

Intracellular Ca2 + waves

mGluRs:

Metabotropic glutamate receptors

IP3:

Inositol 1,4,5-trisphosphate

IP3R:

Inositol 1,4,5-trisphosphate receptor

Gq-linked GPCR:

Gq-linked G protein-coupled receptor

VGLUT:

Vesicular glutamate transporter

VAMP:

Vesicle-associated membrane protein

SNAP:

Synaptosomal-associated protein

TREK-1:

TWIK-related K + channel 1

Best-1:

Bestrophin-1

HI:

Hypoxia-ischemia injury

VRAC:

Volume-regulated anion channel

MCAO:

Middle cerebral artery occlusion

MCAO/R:

Middle cerebral artery occlusion/reperfusion

pMCAO:

Permanent middle cerebral artery occlusion

IClswell:

Swelling-activated Cl- current

P2X7R:

Purinergic P2X7 receptors

NLRP3:

Pyrin structural domain protein 3

OGD:

Oxygen-glucose deprivation

OGD/R:

Oxygen-glucose deprivation/reperfusion

GJs:

Gap junctions

GLAST:

Glutamate/aspartate transporter

GLT-1:

Glutamate transporter-1

rCCAs:

Rat cultured cortical astrocytes

NCX:

Sodium/calcium exchanger

OPCs:

Oligodendrocyte precursor cells

CBX:

Carbenoxolone

CEF:

Ceftriaxone

SDH:

Succinate dehydrogenase

OxAc:

Oxaloacetate

GOT:

Glutamate-oxaloacetate transaminase

hrGOT1:

Human recombinant GOT1

Pyr:

Pyruvate

GPT:

Glutamate-pyruvate transaminases

PD:

Peritoneal dialysis

NPCs:

Neural precursor cells

References

  1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J et al (2022) World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke 17:18–29. https://doi.org/10.1177/17474930211065917

    Article  PubMed  Google Scholar 

  2. Yamagata K (2021) Astrocyte-induced synapse formation and ischemic stroke. J Neurosci Res 99:1401–1413. https://doi.org/10.1002/jnr.24807

    Article  CAS  PubMed  Google Scholar 

  3. Walter K (2022) What is acute ischemic stroke? JAMA 327:885. https://doi.org/10.1001/jama.2022.1420

    Article  PubMed  Google Scholar 

  4. Wang F, Xie X, Xing X, Sun X (2022) Excitatory synaptic transmission in ischemic stroke: a new outlet for classical neuroprotective strategies. Int J Mol Sci 23:9381. https://doi.org/10.3390/ijms23169381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee JS, Lee JS, Gwag BJ, Choi DW, An CS, Kang HG, Song TJ, Ahn SH et al (2023) The rescue on reperfusion damage in cerebral infarction by nelonemdaz (RODIN) trial: protocol for a double-blinded clinical trial of nelonemdaz in patients with hyperacute ischemic stroke and endovascular thrombectomy. J Stroke 25:160–168. https://doi.org/10.5853/jos.2022.02453

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hill MD, Goyal M, Menon BK, Nogueira RG, McTaggart RA, Demchuk AM, Poppe AY, Buck BH et al (2020) Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395:878–887. https://doi.org/10.1016/S0140-6736(20)30258-0

    Article  CAS  PubMed  Google Scholar 

  7. Su XT, Wang L, Ma SM, Cao Y, Yang NN, Lin LL, Fisher M, Yang JW et al (2020) Mechanisms of acupuncture in the regulation of oxidative stress in treating ischemic stroke. Oxid Med Cell Longev 2020:7875396. https://doi.org/10.1155/2020/7875396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mira RG, Cerpa W (2021) Building a bridge between NMDAR-mediated excitotoxicity and mitochondrial dysfunction in chronic and acute diseases. Cell Mol Neurobiol 41:1413–1430. https://doi.org/10.1007/s10571-020-00924-0

    Article  CAS  PubMed  Google Scholar 

  9. Fan G, Liu M, Liu J, Huang Y (2023) The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: glutamate accumulation. Front Mol Neurosci 16:1113081. https://doi.org/10.3389/fnmol.2023.1113081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J et al (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536–549. https://doi.org/10.1002/ana.23626

    Article  CAS  PubMed  Google Scholar 

  11. Kim KS, Jeon MT, Kim ES, Lee CH, Kim DG (2022) Activation of NMDA receptors in brain endothelial cells increases transcellular permeability. Fluids Barriers CNS 19:70. https://doi.org/10.1186/s12987-022-00364-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719

    Article  CAS  PubMed  Google Scholar 

  13. Andersen JV, Schousboe A (2023) Milestone review: metabolic dynamics of glutamate and GABA mediated neurotransmission - the essential roles of astrocytes. J Neurochem 166:109–137. https://doi.org/10.1111/jnc.15811

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8:184. https://doi.org/10.3390/cells8020184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA et al (2023) Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 622:120–129. https://doi.org/10.1038/s41586-023-06502-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Helms HC, Aldana BI, Groth S, Jensen MM, Waagepetersen HS, Nielsen CU, Brodin B (2017) Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model. J Cereb Blood Flow Metab 37:3744–3758. https://doi.org/10.1177/0271678X17690760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaplan-Arabaci O, Acari A, Ciftci P, Gozuacik D (2022) Glutamate scavenging as a neuroreparative strategy in ischemic stroke. Front Pharmacol 13:866738. https://doi.org/10.3389/fphar.2022.866738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinca SB, Salcedo C, Wagner A, Goldeman C, Sadat E, Aibar MMD, Maechler P, Brodin B et al (2020) Brain endothelial cells metabolize glutamate via glutamate dehydrogenase to replenish TCA-intermediates and produce ATP under hypoglycemic conditions. J Neurochem 157:1861–1875. https://doi.org/10.1111/jnc.15207

    Article  CAS  PubMed  Google Scholar 

  19. Pál B (2018) Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 75:2917–2949. https://doi.org/10.1007/s00018-018-2837-5

    Article  CAS  PubMed  Google Scholar 

  20. Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144:151–164. https://doi.org/10.1016/j.jphs.2020.07.011

    Article  CAS  PubMed  Google Scholar 

  21. Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, Bergles DE, Bonci A (2019) Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase. Cell Rep 27:2262–2271. https://doi.org/10.1016/j.celrep.2019.04.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y et al (2022) Glutamate excitotoxicity: potential therapeutic target for ischemic stroke. Biomed Pharmacother 151:113125. https://doi.org/10.1016/j.biopha.2022.113125

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi H, Suzumura A (2014) Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci 8:189. https://doi.org/10.3389/fncel.2014.00189

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368. https://doi.org/10.1074/jbc.M600504200

    Article  CAS  PubMed  Google Scholar 

  25. Gao G, Li C, Zhu J, Wang Y, Huang Y, Zhao S, Sheng S, Song Y et al (2020) Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front Immunol 7(11):161. https://doi.org/10.3389/fimmu.2020.00161

    Article  CAS  Google Scholar 

  26. Gao G, Zhao S, Xia X, Li C, Li C, Ji C, Sheng S, Tang Y et al (2019) Glutaminase C regulates microglial activation and pro-inflammatory exosome release: relevance to the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 13:264. https://doi.org/10.3389/fncel.2019.00264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li H, Xie Y, Zhang N, Yu Y, Zhang Q, Ding S (2015) Disruption of IP3R2-mediated Ca2+ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium 58:565–576. https://doi.org/10.1016/j.ceca.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alabi AA, Tsien RW (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol 75:393–422. https://doi.org/10.1146/annurev-physiol-020911-153305

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci USA 101:9441–9446. https://doi.org/10.1073/pnas.0401960101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson IM, Ranjan R, Schwarz TL (2002) Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418:336–340. https://doi.org/10.1038/nature00915

    Article  CAS  PubMed  Google Scholar 

  31. Wang CT, Lu JC, Bai J, Chang PY, Martin TFJ, Chapman ER, Jackson MB (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424:943–947. https://doi.org/10.1038/nature01857

    Article  CAS  PubMed  Google Scholar 

  32. Sugita S, Han W, Butz S, Liu X, Fernández-Chacón R, Lao Y, Südhof TC (2001) Synaptotagmin VII as a plasma membrane Ca(2+) sensor in exocytosis. Neuron 30:459–473. https://doi.org/10.1016/S0896-6273(01)00290-2

    Article  CAS  PubMed  Google Scholar 

  33. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642. https://doi.org/10.1523/JNEUROSCI.3770-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620. https://doi.org/10.1038/nn1246

    Article  CAS  PubMed  Google Scholar 

  35. Tao-Cheng JH, Pham A, Yang Y, Winters CA, Gallant PE, Reese TS (2014) Syntaxin 4 is concentrated on plasma membrane of astrocytes. Neuroscience 286:264–271. https://doi.org/10.1016/j.neuroscience.2014.11.054

    Article  CAS  PubMed  Google Scholar 

  36. Schubert V, Bouvier D, Volterra A (2011) SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 59:1472–1488. https://doi.org/10.1002/glia.21190

    Article  PubMed  Google Scholar 

  37. Montana V, Liu W, Mohideen U, Parpura V (2009) Single molecule measurements of mechanical interactions within ternary SNARE complexes and dynamics of their disassembly: SNAP25 vs. SNAP23. J Physiol 587:1943–1960. https://doi.org/10.1113/jphysiol.2009.168575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woo DH, Bae JY, Nam MH, An H, Ju YH, Won J, Choi JH, Hwang EM et al (2018) Activation of astrocytic μ-opioid receptor elicits fast glutamate release through TREK-1-containing K2P channel in hippocampal astrocytes. Front Cell Neurosci 12:319. https://doi.org/10.3389/fncel.2018.00319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim A, Jung HG, Kim SC, Choi M, Park JY, Lee SG, Hwang EM (2020) Astrocytic AEG-1 regulates expression of TREK-1 under acute hypoxia. Cell Biochem Funct 38:167–175. https://doi.org/10.1002/cbf.3469

    Article  CAS  PubMed  Google Scholar 

  41. Li F, Zhou SN, Zeng X, Li Z, Yang R, Wang XX, Meng B, Pei WL et al (2022) Activation of the TREK-1 potassium channel improved cognitive deficits in a mouse model of Alzheimer’s disease by modulating glutamate metabolism. Mol Neurobiol 59:5193–5206. https://doi.org/10.1007/s12035-022-02776-9

    Article  CAS  PubMed  Google Scholar 

  42. Wu X, Liu Y, Chen X, Sun Q, Tang R, Wang W, Yu Z, Xie M (2013) Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J Mol Neurosci 49(3):499–506. https://doi.org/10.1007/s12031-012-9875-5

    Article  CAS  PubMed  Google Scholar 

  43. Zheng X, Yang J, Zhu Z, Fang Y, Tian Y, Xie M, Wang W, Liu Y (2022) The two-pore domain potassium channel TREK-1 promotes blood-brain barrier breakdown and exacerbates neuronal death after focal cerebral ischemia in mice. Mol Neurobiol 59:2305–2327. https://doi.org/10.1007/s12035-021-02702-5

    Article  CAS  PubMed  Google Scholar 

  44. Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, Xue Y, Li H et al (2022) The protective effects of hydrogen sulfide new donor methyl S-(4-fluorobenzyl)-N-(3,4,5-trimethoxybenzoyl)-l-cysteinate on the ischemic stroke. Molecules 27:1554. https://doi.org/10.3390/molecules27051554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han KS, Woo J, Park H, Yoon BJ, Choi S, Lee CJ (2013) Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol Brain 6:4. https://doi.org/10.1186/1756-6606-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park H, Han KS, Seo J, Lee J, Dravid SM, Woo J, Chun H, Cho S et al (2021) Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol Brain 8:7. https://doi.org/10.1186/s13041-015-0097-y

    Article  CAS  Google Scholar 

  47. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM et al (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40. https://doi.org/10.1016/j.cell.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  48. Oh SJ, Woo J, Lee YS, Cho M, Kim E, Cho NC, Park JY, Pae AN et al (2017) Direct interaction with 14–3-3γ promotes surface expression of Best1 channel in astrocyte. Mol Brain 10:51. https://doi.org/10.1186/s13041-017-0331-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Owji AP, Yu K, Kittredge A, Wang J, Zhang Y, Yang T (2022) Bestrophin-2 and glutamine synthetase form a complex for glutamate release. Nature 611:180–187. https://doi.org/10.1038/s41586-022-05373-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Golubinskaya V, Vontell R, Supramaniam V, Wyatt-Ashmead J, Gustafsson H, Mallard C, Nilsson H (2019) Bestrophin-3 expression in a subpopulation of astrocytes in the neonatal brain after hypoxic-ischemic injury. Front Physiol 10:23. https://doi.org/10.3389/fphys.2019.00023

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang J, Vitery MDC, Chen J, Osei-Owusu J, Chu J, Qiu Z (2019) Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 102:813–827. https://doi.org/10.1016/j.neuron.2019.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson CS, Bach MD, Ashkavand Z, Norman KR, Martino N, Adam AP, Mongin AA (2019) Metabolic constraints of swelling-activated glutamate release in astrocytes and their implication for ischemic tissue damage. J Neurochem 151:255–272. https://doi.org/10.1111/jnc.14711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balkaya M, Dohare P, Chen S, Schober AL, Fidaleo AM, Nalwalk JW, Sah R, Mongin AA (2023) Conditional deletion of LRRC8A in the brain reduces stroke damage independently of swelling-activated glutamate release. iScience 26:106669. https://doi.org/10.1016/j.isci.2023.106669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schlichter LC, Mertens T, Liu B (2011) Swelling activated Cl- channels in microglia: biophysics, pharmacology and role in glutamate release. Channels (Austin) 5:128–137. https://doi.org/10.4161/chan.5.2.14310

    Article  CAS  PubMed  Google Scholar 

  55. Zhao YF, Tang Y, Illes P (2021) Astrocytic and oligodendrocytic P2X7 receptors determine neuronal functions in the CNS. Front Mol Neurosci 14:641570. https://doi.org/10.3389/fnmol.2021.641570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM (2016) Purinergic signalling in brain ischemia. Neuropharmacology 104:105–130. https://doi.org/10.1016/j.neuropharm.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  57. Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X (2022) Ion channel dysfunction in astrocytes in neurodegenerative diseases. Front Physiol 13:814285. https://doi.org/10.3389/fphys.2022.814285

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sperlágh B, Zsilla G, Baranyi M, Illes P, Vizi ES (2007) Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 149:99–111. https://doi.org/10.1016/j.neuroscience.2007.07.035

    Article  CAS  PubMed  Google Scholar 

  59. Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45:954–961. https://doi.org/10.1016/j.nbd.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  60. Alves VS, da Silva JP, Rodrigues FC, Araújo SMB, Gouvêa AL, Leite-Aguiar R, Santos SACS, da Silva MSP et al (2023) P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice. Front Pharmacol 14:1179723. https://doi.org/10.3389/fphar.2023.1179723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu BJ, Wiley JS (2018) P2X7 as a scavenger receptor for innate phagocytosis in the brain. Br J Pharmacol 175:4195–4208. https://doi.org/10.1111/bph.14470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q (2023) Purinergic signaling: a gatekeeper of blood-brain barrier permeation. Front Pharmacol 14:1112758. https://doi.org/10.3389/fphar.2023.1112758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ottestad-Hansen S, Hu QX, Follin-Arbelet VV, Bentea E, Sato H, Massie A, Zhou Y, Danbolt NC (2018) The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain. Glia 66(5):951–970. https://doi.org/10.1002/glia.23294

    Article  PubMed  Google Scholar 

  64. Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 76:846–854. https://doi.org/10.1046/j.1471-4159.2001.00075.x

    Article  CAS  PubMed  Google Scholar 

  65. Satarker S, Bojja SL, Gurram PC, Mudgal J, Arora D, Nampoothiri M (2022) Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells 11:1139. https://doi.org/10.3390/cells11071139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321. https://doi.org/10.1038/35002090

    Article  CAS  PubMed  Google Scholar 

  67. Passlick S, Rose CR, Petzold GC, Henneberger C (2021) Disruption of glutamate transport and homeostasis by acute metabolic stress. Front Cell Neurosci 15:637784. https://doi.org/10.3389/fncel.2021.637784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21:1876–1883. https://doi.org/10.1523/JNEUROSCI.21-06-01876.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aizawa H, Sun W, Sugiyama K, Itou Y, Aida T, Cui W, Toyoda S, Terai H et al (2020) Glial glutamate transporter GLT-1 determines susceptibility to spreading depression in the mouse cerebral cortex. Glia 68(12):2631–2642. https://doi.org/10.1002/glia.23874

    Article  PubMed  Google Scholar 

  70. Liang Z, Wang X, Hao Y, Qiu L, Lou Y, Zhang Y, Ma D, Feng J (2020) The multifaceted role of astrocyte connexin 43 in ischemic stroke through forming hemichannels and gap junctions. Front Neurol 11:703. https://doi.org/10.3389/fneur.2020.00703

    Article  PubMed  PubMed Central  Google Scholar 

  71. Socodato R, Portugal CC, Rodrigues A, Henriques J, Rodrigues C, Figueira C, Relvas JB (2018) Redox tuning of Ca2+ signaling in microglia drives glutamate release during hypoxia. Free Radic Biol Med 118:137–149. https://doi.org/10.1016/j.freeradbiomed.2018.02.036

    Article  CAS  PubMed  Google Scholar 

  72. Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8:51–63. https://doi.org/10.5498/wjp.v8.i2.51

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rao P, Yallapu MM, Sari Y, Fisher PB, Kumar S (2015) Designing novel nanoformulations targeting glutamate transporter excitatory amino acid transporter 2: implications in treating drug addiction. J Pers Nanomed 1:3–9

    PubMed  PubMed Central  Google Scholar 

  74. Hsu PC, Lan YJ, Chen CC, Lee LY, Chen WP, Wang YC, Lee YH (2022) Erinacine A attenuates glutamate transporter 1 downregulation and protects against ischemic brain injury. Life Sci 306:120833. https://doi.org/10.1016/j.lfs.2022.120833

    Article  CAS  PubMed  Google Scholar 

  75. Harvey BK, Airavaara M, Hinzman J, Wires EM, Chiocco MJ, Howard DB, Shen H, Gerhardt G et al (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS ONE 6:e22135. https://doi.org/10.1371/journal.pone.0022135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rozyczka J, Figiel M, Engele J (2004) Endothelins negatively regulate glial glutamate transporter expression. Brain Pathol 14:406–614. https://doi.org/10.1111/j.1750-3639.2004.tb00084.x

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez-Kern A, Gegelashvili M, Schousboe A, Zhang J, Sung L, Gegelashvili G (2003) Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochem Int 43:363–370. https://doi.org/10.1016/s0197-0186(03)00023-8

    Article  CAS  PubMed  Google Scholar 

  78. Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E (2014) Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 62:1270–1283. https://doi.org/10.1002/glia.22679

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M (2012) Transforming growth factor-α mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60:1024–1036. https://doi.org/10.1002/glia.22329

    Article  PubMed  PubMed Central  Google Scholar 

  80. Autry AE, Grillo CA, Piroli GG, Rothstein JD, McEwen BS, Reagan LP (2006) Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology 83:371–379. https://doi.org/10.1159/000096092

    Article  CAS  PubMed  Google Scholar 

  81. Zorec R, Verkhratsky A, Rodríguez JJ, Parpura V (2016) Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323:67–75. https://doi.org/10.1016/j.neuroscience.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  82. He X, Chen F, Zhang Y, Gao Q, Guan Y, Wang J, Zhou J, Zhai F, Boison D et al (2019) Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen’s encephalitis. Brain Pathol 30:246–260. https://doi.org/10.1111/bpa.12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Márkus NM, McQueen J et al (2017) Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8:15132. https://doi.org/10.1038/ncomms15132

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB (2017) Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 143:489–506. https://doi.org/10.1111/jnc.14135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martinez-Lozada Z, Robinson MB (2020) Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochem Int 139:104787. https://doi.org/10.1016/j.neuint.2020.104787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520. https://doi.org/10.1038/sj.emboj.7600555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Karki P, Webb A, Smith K, Johnson J Jr, Lee K, Son DS, Aschner M, Lee E (2014) Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol 34:1280–1289. https://doi.org/10.1128/MCB.01176-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Helms HC, Aldana BI, Groth S, Jensen MM, Waagepetersen HS, Nielsen CU, Brodin B (2017) Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model. J Cereb Blood Flow Metab 37:3744–3758. https://doi.org/10.1177/0271678X17690760z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Castillo J, Loza MI, Mirelman D, Brea J, Blanco M, Sobrino T, Campos F (2016) A novel mechanism of neuroprotection: blood glutamate grabber. J Cereb Blood Flow Metab 36:292–301. https://doi.org/10.1177/0271678X15606721

    Article  CAS  PubMed  Google Scholar 

  90. Bonova P, Jachova J, Nemethova M, Bona M, Kollarova P, Gottlieb M (2021) Accelerated capacity of glutamate uptake via blood elements as a possible tool of rapid remote conditioning mediated tissue protection. Neurochem Int 142:104927. https://doi.org/10.1016/j.neuint.2020.104927

    Article  CAS  PubMed  Google Scholar 

  91. Hinca SB, Salcedo C, Wagner A, Goldeman C, Sadat E, Aibar MMD, Maechler P, Brodin B et al (2021) Brain endothelial cells metabolize glutamate via glutamate dehydrogenase to replenish TCA-intermediates and produce ATP under hypoglycemic conditions. J Neurochem 157:1861–1875. https://doi.org/10.1111/jnc.15207

    Article  CAS  PubMed  Google Scholar 

  92. Pitt D, Nagelmeier IE, Wilson HC, Raine CS (2003) Glutamate uptake by oligodendrocytes: implications for excitotoxicity in multiple sclerosis. Neurology 61:1113–1120. https://doi.org/10.1212/01.wnl.0000090564.88719.37

    Article  CAS  PubMed  Google Scholar 

  93. Hogan-Cann AD, Anderson CM (2016) Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol Sci 37:750–767. https://doi.org/10.1016/j.tips.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  94. Verkhratsky A, Chvátal A. NMDA receptors in astrocytes (2020) Neurochem Res 45(1):122–133. https://doi.org/10.1007/s11064-019-02750-3

  95. Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163:1755–1766. https://doi.org/10.1111/j.1476-5381.2011.01374.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krebs C, Fernandes HB, Sheldon C, Raymond LA, Baimbridge KG (2003) Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 23:3364–3372. https://doi.org/10.1523/JNEUROSCI.23-08-03364.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou Y, Li HL, Zhao R, Yang LT, Dong Y, Yue X, Ma YY, Wang Z et al (2010) Astrocytes express N-methyl-D-aspartate receptor subunits in development, ischemia and post-ischemia. Neurochem Res 35:2124–2134. https://doi.org/10.1007/s11064-010-0325-x

    Article  CAS  PubMed  Google Scholar 

  98. Dzamba D, Honsa P, Valny M, Kriska J, Valihrach L, Novosadova V, Kubista M, Anderova M (2015) Quantitative analysis of glutamate receptors in glial cells from the cortex of GFAP/EGFP mice following ischemic injury: focus on NMDA receptors. Cell Mol Neurobiol 35:1187–1202. https://doi.org/10.1007/s10571-015-0212-8

    Article  CAS  PubMed  Google Scholar 

  99. de Oca M, Balderas P, Aguilera P (2015) A metabotropic-like flux-independent NMDA receptor regulates Ca2+ exit from endoplasmic reticulum and mitochondrial membrane potential in cultured astrocytes. PLoS ONE 10:e0126314. https://doi.org/10.1371/journal.pone.0126314

    Article  CAS  Google Scholar 

  100. Ziemens D, Oschmann F, Gerkau NJ, Rose CR (2019) Heterogeneity of activity induced sodium transients between astrocytes of the mouse hippocampus and neocortex: mechanisms and consequences. J Neurosci 39:2620–2634. https://doi.org/10.1523/JNEUROSCI.2029-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E, Lopatar J, Pfrieger FW et al (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88:957–972. https://doi.org/10.1016/j.neuron.2015.10.037

    Article  CAS  PubMed  Google Scholar 

  102. Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG (2017) Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 94:840–854. https://doi.org/10.1016/j.neuron.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bodner O, Radzishevsky I, Foltyn VN, Touitou A, Valenta AC, Rangel IF, Panizzutti R, Kennedy RT et al (2020) D-Serine signaling and NMDAR-mediated synaptic plasticity are regulated by system A-type of glutamine/D-serine dual transporters. J Neurosci 40:6489–6502. https://doi.org/10.1523/JNEUROSCI.0801-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747. https://doi.org/10.1371/journal.pbio.1001747

    Article  PubMed  PubMed Central  Google Scholar 

  105. Boue-Grabot E, Pankratov Y (2017) Modulation of central synapses by astrocyte released ATP and postsynaptic P2X receptors. Neural Plast 2017:9454275. https://doi.org/10.1155/2017/9454275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stenovec M, Lasič E, Božić M, Bobnar ST, Stout RF Jr, Grubišić V, Parpura V, Zorec R (2016) Ketamine inhibits ATP-evoked exocytotic release of brain-derived neurotrophic factor from vesicles in cultured rat astrocytes. Mol Neurobiol 53:6882–6896. https://doi.org/10.1007/s12035-015-9562-y

    Article  CAS  PubMed  Google Scholar 

  107. Verkhratsky A, Untiet V, Rose CR (2020) Ionic signalling in astroglia beyond calcium. J Physiol 598:1655–1670. https://doi.org/10.1113/JP277478

    Article  CAS  PubMed  Google Scholar 

  108. Hogan-Cann AD, Lu P, Anderson CM (2019) Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice. Proc Natl Acad Sci USA 116:10229–10231. https://doi.org/10.1073/pnas.1902647116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu L, Hogan-Cann AD, Globa AK, Lu P, Nagy JI, Bamji SX, Anderson CM (2019) Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J Cereb Blood Flow Metab 39:481–496. https://doi.org/10.1177/0271678X17734100

    Article  CAS  PubMed  Google Scholar 

  110. Mapelli L, Gagliano G, Soda T, Laforenza U, Moccia F, D’Angelo EU (2017) Granular layer neurons control cerebellar neurovascular coupling through an NMDA receptor/NO-dependent system. J Neurosci 37:1340–1351. https://doi.org/10.1523/JNEUROSCI.2025-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19:1619–1627. https://doi.org/10.1038/nn.4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Epping L, Schroeter CB, Nelke C, Bock S, Gola L, Ritter N, Herrmann AM, Räuber S et al (2022) Activation of non-classical NMDA receptors by glycine impairs barrier function of brain endothelial cells. Cell Mol Life Sci 79:479. https://doi.org/10.1007/s00018-022-04502-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132. https://doi.org/10.1016/j.neuron.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166. https://doi.org/10.1038/nature04302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD et al (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992. https://doi.org/10.1038/nature04474

    Article  CAS  PubMed  Google Scholar 

  116. Cao N, Yao ZX (2013) Oligodendrocyte N-methyl-D-aspartate receptor signaling: insights into its functions. Mol Neurobiol 47:845–856. https://doi.org/10.1007/s12035-013-8408-8

    Article  CAS  PubMed  Google Scholar 

  117. Li C, Xiao L, Liu X, Yang W, Shen W, Hu C, Yang G, He C (2013) A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61:732–749. https://doi.org/10.1002/glia.22469

    Article  PubMed  Google Scholar 

  118. De Biase LM, Kang SH, Baxi EG, Fukaya M, Pucak ML, Mishina M, Calabresi PA, Bergles DE (2011) NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J Neurosci 31:12650–12662. https://doi.org/10.1523/JNEUROSCI.2455-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C (2011) Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 59:521–539. https://doi.org/10.1002/glia.21121

    Article  PubMed  Google Scholar 

  120. Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S et al (2019) Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation 16:118. https://doi.org/10.1186/s12974-019-1505-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mazella J, Pétrault O, Lucas G, Deval E, Béraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C et al (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8:e1000355. https://doi.org/10.1371/journal.pbio.1000355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pietri M, Djillani A, Mazella J, Borsotto M, Heurteaux C (2019) First evidence of protective effects on stroke recovery and post-stroke depression induced by sortilin-derived peptides. Neuropharmacology 158:107715. https://doi.org/10.1016/j.neuropharm.2019.107715

    Article  CAS  PubMed  Google Scholar 

  123. Moha Ou Maati H, Veyssiere J, Labbal F, Coppola T, Gandin C, Widmann C, Mazella J, Heurteaux C et al (2012) Spadin as a new antidepressant: absence of TREK-1-related side effects. Neuropharmacology 62:278–288. https://doi.org/10.1016/j.neuropharm.2011.07.019

    Article  CAS  PubMed  Google Scholar 

  124. Deng ZH, Liao J, Zhang JY, Liang C, Song CH, Han M, Wang LH, Xue H et al (2014) Inhibition of the connexin 43 elevation may be involved in the neuroprotective activity of leptin against brain ischemic injury. Cell Mol Neurobiol 34:871–879. https://doi.org/10.1007/s10571-014-0066-5

    Article  CAS  PubMed  Google Scholar 

  125. Ma D, Feng L, Cheng Y, Xin M, You J, Yin X, Hao Y, Cui L et al (2018) Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia. J Neuroinflammation 15:198. https://doi.org/10.1186/s12974-018-1230-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yin X, Feng L, Ma D, Yin P, Wang X, Hou S, Hao Y, Zhang J et al (2018) Roles of astrocytic connexin-43, hemichannels, and gap junctions in oxygen-glucose deprivation/reperfusion injury induced neuroinflammation and the possible regulatory mechanisms of salvianolic acid B and carbenoxolone. J Neuroinflammation 15:97. https://doi.org/10.1186/s12974-018-1127-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li X, Zhao H, Tan X, Kostrzewa RM, Du G, Chen Y, Zhu J, Miao Z et al (2015) Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia 63:1553–1567. https://doi.org/10.1002/glia.22826

    Article  PubMed  Google Scholar 

  128. Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG (2021) Peptidic Connexin43 therapeutics in cardiac reparative medicine. J Cardiovasc Dev Dis 8:52. https://doi.org/10.3390/jcdd8050052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Abulseoud OA, Alasmari F, Hussein AM, Sari Y (2022) Ceftriaxone as a novel therapeutic agent for hyperglutamatergic states: bridging the gap between preclinical results and clinical translation. Front Neurosci 16:841036. https://doi.org/10.3389/fnins.2022.841036

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rao PS, Saternos H, Goodwani S, Sari Y (2015) Effects of ceftriaxone on GLT1 isoforms, xCT and associated signaling pathways in P rats exposed to ethanol. Psychopharmacology 232:2333–2342. https://doi.org/10.1007/s00213-015-3868-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen Y, He P, Fan YY, Zhang JX, Yan HJ, Hu WW, Ohtsu H, Chen Z (2010) Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free radical bio med 48:727–735. https://doi.org/10.1016/j.freeradbiomed.2009.12.021

    Article  CAS  Google Scholar 

  132. Jain S, Kim ES, Kim D, Burrows D, De Felice M, Kim M, Baek SH, Ali A et al (2020) Comparative cerebroprotective potential of d- and l-carnosine following ischemic stroke in mice. Int J Mol Sci 21:3053. https://doi.org/10.3390/ijms21093053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Melani A, Dettori I, Corti F, Cellai L, Pedata F (2015) Time-course of protection by the selective A2A receptor antagonist SCH58261 after transient focal cerebral ischemia. Neurol Sci 36:1441–1448. https://doi.org/10.1007/s10072-015-2160-y

    Article  PubMed  Google Scholar 

  134. Zhou Y, Zeng X, Li G, Yang Q, Xu J, Zhang M, Mao X, Cao Y et al (2019) Inactivation of endothelial adenosine A2A receptors protects mice from cerebral ischaemia-induced brain injury. Br J Pharmacol 176:2250–2263. https://doi.org/10.1111/bph.14673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han BR, Lin SC, Espinosa K, Thorne PR, Vlajkovic SM (2019) Inhibition of the adenosine A2A receptor mitigates excitotoxic injury in organotypic tissue cultures of the rat cochlea. Cells 8:877. https://doi.org/10.3390/cells8080877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin Z, Huang P, Huang S, Guo L, Xu X, Shen X, Xie B, Zhong Y (2018) Effect of adenosine and adenosine receptor antagonists on retinal Müller cell inwardly rectifying potassium channels under exogenous glutamate stimulation. Biomed Res Int 2018:2749257. https://doi.org/10.1155/2018/2749257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu Y, Chu S, Hu Y, Yang S, Li X, Zheng Q, Ai Q, Ren S et al (2021) Exogenous adenosine antagonizes excitatory amino acid toxicity in primary astrocytes. Cell Mol Neurobiol 41:687–704. https://doi.org/10.1007/s10571-020-00876-5

    Article  CAS  PubMed  Google Scholar 

  138. Peng M, Ling X, Song R, Gao X, Liang Z, Fang F, Cang J (2019) Upregulation of GLT-1 via PI3K/Akt pathway contributes to neuroprotection induced by dexmedetomidine. Front Neurol 10:1041. https://doi.org/10.3389/fneur.2019.01041

    Article  PubMed  PubMed Central  Google Scholar 

  139. Taheri F, Sattari E, Hormozi M, Ahmadvand H, Bigdeli MR, Kordestani-Moghadam P, Anbari K, Milanizadeh S et al (2022) Dose-dependent effects of astaxanthin on ischemia/reperfusion induced brain injury in MCAO model rat. Neurochem Res 47:1736–1750. https://doi.org/10.1007/s11064-022-03565-5

    Article  CAS  PubMed  Google Scholar 

  140. Zhang X, Shi M, Bjørås M, Wang W, Zhang G, Han J, Liu Z, Zhang Y et al (2013) Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 4:152. https://doi.org/10.3389/fphar.2013.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ferreira RS, Teles-Souza J, Dos Santos Souza C, Pereira ÉPL, de Araújo FM, da Silva AB, Castro E Silva JH, Nonose Y, et al (2021) Rutin improves glutamate uptake and inhibits glutamate excitotoxicity in rat brain slices. Mol Biol Rep 48:1475-1483https://doi.org/10.1007/s11033-021-06145-y

  142. Song X, Gong Z, Liu K, Kou J, Liu B, Liu K (2020) Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol 34:101559. https://doi.org/10.1016/j.redox.2020.101559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dopico-López A, Pérez-Mato M, da Silva-Candal A, Iglesias-Rey R, Rabinkov A, Bugallo-Casal A, Sobrino T, Mirelman D et al (2021) Inhibition of endogenous blood glutamate oxaloacetate transaminase enhances the ischemic damage. Transl Res 230:68–81. https://doi.org/10.1016/j.trsl.2020.10.004

    Article  CAS  PubMed  Google Scholar 

  144. Pérez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, Menendez P, Castillo J et al (2014) Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis 5:e992. https://doi.org/10.1038/cddis.2013.507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zaghmi A, Dopico-López A, Pérez-Mato M, Iglesias-Rey R, Hervella P, Greschner AA, Bugallo-Casal A, da Silva A et al (2020) Sustained blood glutamate scavenging enhances protection in ischemic stroke. Commun Biol 3:729. https://doi.org/10.1038/s42003-020-01406-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Frank D, Kuts R, Tsenter P, Gruenbaum BF, Grinshpun Y, Zvenigorodsky V, Shelef I, Natanel D et al (2019) The effect of pyruvate on the development and progression of post-stroke depression: a new therapeutic approach. Neuropharmacology 155:173–184. https://doi.org/10.1016/j.neuropharm.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Godino Mdel C, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J, Vivancos J, Moro MA et al (2013) Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest 123:4359–4363. https://doi.org/10.1172/JCI67284

    Article  CAS  PubMed  Google Scholar 

  148. Davies S, Lally F, Satchithananda D, Kadam U, Roffe C (2014) Extending the role of peritoneal dialysis: can we win hearts and minds? Nephrol Dial Transplant 29:1648–1654. https://doi.org/10.1093/ndt/gfu001

    Article  CAS  PubMed  Google Scholar 

  149. Bacigaluppi M, Russo GL, Peruzzotti-Jametti L, Rossi S, Sandrone S, Butti E, De Ceglia R, Bergamaschi A et al (2016) Neural stem cell transplantation induces stroke recovery by upregulating glutamate transporter GLT-1 in astrocytes. J Neurosci 36:10529–10544. https://doi.org/10.1523/JNEUROSCI.1643-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pérez-Mato M, Iglesias-Rey R, Vieites-Prado A, Dopico-López A, Argibay B, Fernández-Susavila H, da Silva-Candal A, Pérez-Díaz A et al (2019) Blood glutamate EAAT2-cell grabbing therapy in cerebral ischemia. EBioMedicine 39:118–131. https://doi.org/10.1016/j.ebiom.2018.11.024

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the key projects of Shandong (China) Natural Science Fund [grant number ZR2020KH003] (Sponsor: Bing-bing Han) and the Student Innovation and Entrepreneurship Training Program of Shandong Province [grant number 2022083] (Sponsor: Tian-he Fang).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature collection and summarization were performed by Hao Yu, Jia-xin Li, Na Li, Chong Li, Dong-han Xu, Hao Zhang, and Tian-he Fang. The first draft of the manuscript was written by Xiao-man Yang. Review and editing were done by Shi-jun Wang, Pei-yu Yan, and Bing-bing Han. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shi-jun Wang, Pei-yu Yan or Bing-bing Han.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiao-man Yang and Hao Yu are the co-first authors.

Shi-jun Wang and Pei-yu Yan are the co-corresponding authors; the main corresponding author is Bing-bing Han.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xm., Yu, H., Li, Jx. et al. Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04184-7

Keywords

Navigation