Skip to main content
Log in

Digital design of scaffold for mandibular defect repair based on tissue engineering

  • New Technique
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Serriah, M.M., Odell, E., Lock, C., Gillar, A., Ayoub, A.F., Fleming, R.H., 2004. Histological assessment of bioengineered new bone in repairing osteoperiosteal mandibular defects in sheep using recombinant human bone morphogenetic protein-7. Br. J. Oral Maxillofac. Surg., 42(5):410–418. [doi:10.1016/j.bjoms.2004.05.005]

    Article  PubMed  CAS  Google Scholar 

  • Abu-Serriah, M.M., Ayoub, A., Wray, D., Milne, N., Carmichael, S., Boyd, J., 2006. Contour and volume assessment of repairing mandibular osteoperiosteal continuity defects in sheep using recombinant human osteogenic protein 1. J. Craniomaxillofac. Surg., 34(3):162–167.

    PubMed  Google Scholar 

  • Adachi, T., Osako, Y., Tanaka, M., Hojo, M., Hollister, S.J., 2006. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials, 27(21):3964–3972. [doi:10.1016/j.biomaterials.2006.02.039]

    Article  PubMed  CAS  Google Scholar 

  • Armillotta, A., Pelzer, R., 2008. Modeling of porous structures for rapid prototyping of tissue engineering scaffolds. Int. J. Adv. Manuf. Technol., 39(5–6):501–511. [doi:10.1007/s00170-007-1247-x]

    Article  Google Scholar 

  • Ciocca, L., D’Crescenzio, F., Fantini, M., Scotti, R., 2009. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput. Med. Imaging Graph., 33(1):58–62. [doi:10.1016/j.compmedimag.2008.10.005]

    Article  PubMed  CAS  Google Scholar 

  • d’Anquino, R., de Rosa, A., Lanza, V., Tirino, V., Laino, L., Graziano, A., 2009. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cell Mater., 18: 75–83.

    Google Scholar 

  • Drosse, I., Volkmer, E., Capanna, R., D’Biase, P., Mutschler, W., Schieker, M., 2008. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury, 39(S2):s9–s20. [doi:10.1016/S0020-1383(08)70011-1]

    Article  PubMed  Google Scholar 

  • Fang, Z., Starly, B., Sun, W., 2005. Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Comput. Aided Des., 37(1):65–72. [doi: 10.1016/j.cad.2004.04.002]

    Article  Google Scholar 

  • Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., 2008. Wound repair and regeneration. Nature, 453(7193): 314–321. [doi:10.1038/nature07039]

    Article  PubMed  CAS  Google Scholar 

  • Hollister, S.J., Cheng, Y.L., 2007. Computational design of tissue engineering scaffolds. Comput. Methods Appl. Mech. Eng., 196(31–32):2991–2998. [doi:10.1016/j.cma.2006.09.023]

    Article  Google Scholar 

  • Jiang, X.Q., Zhao, J., Wang, S.Y., Sun, X.J., Zhang, X.L., Chen, J., Kaplan, D.L., Zhang, Z.Y., 2009. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials, 30(27):4522–4532. [doi:10.1016/j.biomaterials.2009.05.021]

    Article  PubMed  CAS  Google Scholar 

  • Langer, R., Vacanti, J.P., 1993. Tissue engineering. Science, 260(5110):920–926. [doi:10.1126/science.8493529]

    Article  PubMed  CAS  Google Scholar 

  • Más Estellés, J., Vidaurre, A., Duenas, J.M.M., Cortázar, I.C., 2008. Physical characterization of polycaprolactone scaffolds. J. Mater. Sci. Mater. Med., 19(1):189–195. [doi:10.1007/s10856-006-0101-2]

    Article  PubMed  Google Scholar 

  • Sachlos, E., Czernuszka, J.T., 2003. Making tissue engineering scaffolds work. Review of the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater., 5:29–40.

    PubMed  CAS  Google Scholar 

  • Sun, W., Lal, P., 2002. Recent development on computer aided tissue engineering-a review. Comput. Methods Programs Biomed., 67(2):85–103. [doi:10.1016/S0169-2607(01)00116-X]

    Article  PubMed  Google Scholar 

  • Sun, W., Starly, B., Nam, J., Darling, A., 2005. Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput. Aided Des., 37(11):1097–1114. [doi:10.1016/j.cad.2005.02.002]

    Article  Google Scholar 

  • Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S., 2005. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23):4817–4827. [doi:10.1016/j.biomaterials.2004.11.057]

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J., Cui, L., Zhang, W.J., Liu, W., Cao, Y.L., 2007. Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate. Biomaterials, 28(6):1005–1013. [doi:10.1016/j.biomaterials.2006.10.015]

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Zhang, Z., Wang, S., Sun, X., Chen, J., Kaplan, D.L., Jiang, X., 2009. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone, 45(3): 517–527. [doi:10.1016/j.bone.2009.05.026]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-feng Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50905164), and the Zhejiang Provincial Natural Science Foundation of China (No. Y2090835)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yf., Zhu, Fd., Dong, Xt. et al. Digital design of scaffold for mandibular defect repair based on tissue engineering. J. Zhejiang Univ. Sci. B 12, 769–779 (2011). https://doi.org/10.1631/jzus.B1000323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000323

Key words

CLC number

Navigation