Skip to main content
Log in

Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette

  • Science Letters
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transformation reproducibility and efficiency. Using a linear minimal gus gene cassette as the foreign DNA, a maximum transformation frequency of 11% was obtained in flowers of the soybean cultivar ‘Liaodou 14’ with their styles mostly removed, whereas removal of only the stigma, partial style cutting and partial ovary cutting gave transformation frequencies of 0%, 1%, and 2%, respectively. An average transformation frequency of 8.2% was obtained when 619 flowers from three soybean cultivars (‘Liaodou 14’, ‘Liaodou 13’, and ‘Tiefeng 29’) were transformed by this optimized method. Southern blotting analysis showed that the gus reporter gene (encoding β-glucuronidase) was stably inherited with a simple pattern. Reverse transcription-polymerase chain reaction (RT-PCR) and GUS staining confirmed the expression of the gus gene in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechtold, N., Jaudeau, B., Jolivet, S., Maba, B., Vezon, D., Voisin, R., Pelletier, G., 2000. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics, 155(4): 1875–1887.

    CAS  PubMed  Google Scholar 

  • Bent, A.F., 2000. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol., 124(4):1540–1547. [doi:10.1104/pp.124.4.1540]

    Article  CAS  PubMed  Google Scholar 

  • Bent, A.F., 2006. Arabidopsis thaliana floral dip transformation method. Methods Mol. Biol., 343:87–103. [doi:10.1385/1-59745-130-4:87]

    CAS  PubMed  Google Scholar 

  • Chabaud, M., Ratet, P., de Sousa Araújo, S., Roldão Lopes Amaral Duque, A.S., Harrison, M., Barker, D.G., 2007. Agrobacterium tumefaciens-Mediated Transformation and in vitro Plant Regeneration of M. truncatula. Available from http://www.noble.org/MedicagoHandbook [Accessed on Oct. 8, 2009]

  • Cheng, Y.Q., Yang, J., Xu, F.P., An, L.J., Liu, J.F., Chen, Z.W., 2009. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation. Appl. Biochem. Biotechnol., 159(3):739–749. [doi:10.1007/s12010-009-8554-7]

    Article  CAS  PubMed  Google Scholar 

  • Clough, S.J., Bent, A.F., 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16(6):735–743. [doi:10.1046/j.1365-313x.1998.00343.x]

    Article  CAS  PubMed  Google Scholar 

  • Desfeux, C., Clough, S.J., Bent, A.F., 2000. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floraldip method. Plant Physiol., 123(3):895–904. [doi:10.1104/pp.123.3.895]

    Article  CAS  PubMed  Google Scholar 

  • Droste, A., Pasquali, G., Bodanese-Zanettini, H.M., 2002. Transgenic fertile plants of soybean [Glycine max (L.) Merrill] obtained from bombarded embryogenic tissue. Euphytica, 127(3):367–376. [doi:10.1023/A:1020370913140]

    Article  CAS  Google Scholar 

  • Gao, X.R., Wang, G.K., SU, Q., Wang, Y., AN, L.J., 2007. Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol. Lett., 29(11):1781–1787. [doi:10.1007/s10529-007-9439-x]

    Article  CAS  PubMed  Google Scholar 

  • Hu, C.Y., Wang, L.Z., 1999. In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell. Dev. Biol. Plant, 35(5):417–420. [doi:10.1007/s11627-999-0058-1]

    Article  Google Scholar 

  • Jefferson, R.A., 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep., 5(4): 387–405. [doi:10.1007/BF02667740]

    Article  CAS  Google Scholar 

  • Liu, J.F., Su, Q., An, L.J., Yang, A.F., 2009. Transfer of a minimal linear marker-free and vector-free smGFP cassette into soybean via ovary-drip transformation. Biotechnol. Lett., 31(2):295–303. [doi:10.1007/s10529-008-9851-x]

    Article  CAS  PubMed  Google Scholar 

  • McCabe, D.E., Swain, W.F., Martinell, B.J., Christou, P., 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology, 6(8):923–926. [doi: 10.1038/nbt0888-923]

    Article  Google Scholar 

  • Mello-Farias, P., Chaves, A., 2008. Advances in Agrobacterium-mediated plant transformation with emphasis on soybean. Sci. Agric. (Piracicaba, Braz.), 65(1):95–106. [doi:10.1590/S0103-90162008000100014]

    Article  Google Scholar 

  • Murray, M.G., Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids. Res., 8(19):4321–4325. [doi:10.1093/nar/8.19.4321]

    Article  CAS  PubMed  Google Scholar 

  • Paz, M.M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A.K., Wang, K., 2004. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica, 136(2): 167–179. [doi:10.1023/B:EUPH.0000030669.75809.dc]

    Article  CAS  Google Scholar 

  • Paz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M., Wang, K., 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep., 25(3):206–213. [doi:10.1007/s00299-005-0048-7]

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Tritsch, E.F., Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Santarém, E.R., Finer, J.J., 1999. Transformation of soybean (Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell. Dev. Biol. Plant, 35(6):451–455. [doi:10.1007/s11627-999-0067-0]

    Article  Google Scholar 

  • Sato, S., Newell, C., Kolacz, K., Tredo, L., Finer, J.J., Hinchee, M., 1993. Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep., 12(7–8):408–413. [doi:10.1007/BF00234702]

    CAS  Google Scholar 

  • Trieu, A.T., Burleigh, S.H., Kardailsky, I.V., Maldonado-Mendoza, I.E., Versaw, W.K., Blaylock, L.A., Shin, H., Chiou, T.J., Katagi, H., Dewbre, G.R., Weigel, D., Harrison, M.J., 2000. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J., 22(6):531–541. [doi:10.1046/j.1365-313x.2000.00757.x]

    Article  CAS  PubMed  Google Scholar 

  • Wu, W., Su, Q., Xia, X.Y., Wang, Y., Luan, Y.S., An, L.J., 2008. The Suaeda liaotungensis Kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica, 159(1–2):17–25. [doi:10.1007/s10681-007-9451-1]

    CAS  Google Scholar 

  • Xue, R.G., Xie, H.F., Zhang, B., 2006. A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol. Lett., 28(19):1551–1557. [doi:10.1007/s10529-006-9123-6]

    Article  CAS  PubMed  Google Scholar 

  • Yang, A.F., Su, Q., An, L.J., Liu, J.F., Wu, W., Qiu, Z., 2009a. Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J. Biotechnol., 139(1):1–5. [doi:10.1016/j.jbiotec.2008.08.012]

    Article  CAS  PubMed  Google Scholar 

  • Yang, A.F., Su, Q., An, L., 2009b. Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. Planta, 229(4):793–801. [doi:10.1007/s00425-008-0871-5]

    Article  CAS  PubMed  Google Scholar 

  • Ye, G.N., Stone, D., Pang, S.Z., Creely, W., Gonzalez, K., Hinchee, M., 1999. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J., 19(3):249–257. [doi:10.1046/j.1365-313X.1999.00520.x]

    Article  PubMed  Google Scholar 

  • Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W., Chua, N.H., 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc., 1(2):641–646. [doi:10.1038/nprot.2006.97]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Li-jia An.

Additional information

Project (No. JY03-B-18-02) supported by the National R & D Project of Transgenic Crops of Ministry of Science and Technology of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Yang, J., Cheng, Yq. et al. Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette. J. Zhejiang Univ. Sci. B 10, 870–876 (2009). https://doi.org/10.1631/jzus.B0920204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0920204

Key words

CLC number

Navigation