Skip to main content
Log in

EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application

中国海相黏土的压缩指数的EPR-RCGA 回归模 型和RMSE-AIC-BIC 模型选择及其工程应用

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The compression index is a key parameter in the field of soft clay engineering. In this paper, we propose an improved method for correlating the compression index with the physical properties of intact Chinese marine clays that are involved in many construction projects in coastal regions in China. First, the compression index and some common physical properties of clays from 21 regions along the Chinese coast are extracted from the literature. Then, a basic regression analysis for the compression index using the natural water content and Atterberg limits is conducted. To improve the correlation performance, an evolutionary polynomial regression (EPR) and real coded genetic algorithm (RCGA) combined technique is adopted to formulate different equations involving different numbers of variables. An optimal correlation using only natural water content and liquid limit as input parameters is finally selected according to the root mean square error (RMSE), Akaike’s information criterion (AIC), and Bayesian information criterion (BIC). The proposed correlation is evaluated and shown to perform better than existing empirical correlations in predicting the compression index for all selected Chinese marine clays. This correlation is validated to be reliable and applicable to engineering applications through the prediction of the properties of an embankment on the southeast coast of China using finite element method. All comparisons show that the EPR and RCGA combined technique is powerful for correlating the compression index with the physical properties of the clay, and that model selection by RMSE, AIC, and BIC is effective. The proposed correlation could be used to update current formulations, and is applicable to engineering design in coastal regions of China.

中文概要

目的

压缩指数是软土工程领域的关键参数。本文旨在 提出一个基于进化多项式回归和实编码遗传算 法(EPR-RCGA)的回归分析方法,将压缩指数 与物理特性建立相关关系并应用于工程实践。

创新点

结合EPR 和RCGA 方法,将中国沿海21 个不同 区域的黏土的压缩性指数与天然含水率和液塑限之间建立相关关系, 并采用均方根误差 (RMSE)、赤池信息量准则(AIC)和贝叶斯信 息准则(BIC)对所建立的不同回归模型进行优选。

方法

1. 从文献中收集中国沿海21 个地区的黏土的压 缩指数和常见的基本物理性质,并对数据进行整 理和分类。2. 进行压缩指数和天然含水量及液塑 限之间的EPR 回归关系分析,并采用新近提出的 RCGA 优化方法来提高回归关系的精度。3. 采用 RMSE、AIC 和BIC 对不同组合下的回归关系进 行优选,并确定最佳回归关系。4. 将得到的关系 式应用到有限元路堤计算来验证所得关系式的 实用性和准确性。

结论

1. 本文提出的压缩指数关系式比现有的经验公式 更好,预测得到的压缩指数更为精确。2. 采用所 提出的压缩指数回归模型预测了东南沿海一路 堤下不同土层的压缩指数,并应用所得数据和有 限元方法对路堤的沉降进行了模拟分析,验证了 所提方法的可靠性。3. 所有结果表明,结合基于 EPR 和RCGA 的回归分析方法以及基于RMSE、 AIC 和BIC 的模型选择方法对分析压缩指数与黏 土的物理性质的相关关系是切实可行的,可以更 好地服务于中国沿海地区的工程设计。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H, 1998. Information theory and an extension of the maximum likelihood principle. Selected Papers of Hirotugu Akaike. Springer, p.199–213. https://doi.org/10.1007/978-1-4612-1694-0_15

    Google Scholar 

  • Azzouz AS, Krizek RJ, Corotis RB, 1976. Regression analysis of soil compressibility. Soils and Foundations, 16(2):19–29. https://doi.org/10.3208/sandf1972.16.2_19

    Article  Google Scholar 

  • Bowles JE, 1979. Physical and Geotechnical Properties of Soils. McGraw Hill, New York, USA.

    Google Scholar 

  • Burland J, 1990. On the compressibility and shear strength of natural clays. Géotechnique, 40(3):329–378. https://doi.org/10.1680/geot.1990.40.3.329

    Article  Google Scholar 

  • Carrier WD, 1985. Consolidation parameters derived from index tests. Géotechnique, 35(2):211–213. https://doi.org/10.1680/geot.1985.35.2.211

    Article  MathSciNet  Google Scholar 

  • Chen B, Sun DA, Lu HB, 2013. Experimental study of compression behavior of marine soft clays. Rock and Soil Mechanics, 34(2):381–388 (in Chinese).

    Google Scholar 

  • Faramarzi A, Alani AM, Javadi AA, 2014. An EPR-based self-learning approach to material modelling. Computers & Structures, 137:63–71. https://doi.org/10.1016/j.compstruc.2013.06.012

    Article  Google Scholar 

  • Gao DZ, Wei DD, Hu ZX, 1986. Geotechnical properties of Shanghai soils and engineering applications. Marine Geotechnology and Nearshore/Offshore Structures. ASTM International, USA.

    Google Scholar 

  • Giustolisi O, Savic DA, 2006. A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8(3):207–222. https://doi.org/10.2166/hydro.2006.020

    Google Scholar 

  • Herrero AA, 1983. End-product inhibition in anaerobic fermentations. Trends in Biotechnology, 1(2):49–53. https://doi.org/10.1016/0167-7799(83)90069-0

    Article  Google Scholar 

  • Hong ZS, Yin J, Cui YJ, 2010. Compression behaviour of reconstituted soils at high initial water contents. Géotechnique, 60(9):691–700. https://doi.org/10.1680/geot.09.P.059

    Article  Google Scholar 

  • Hong ZS, Zeng LL, Cui YJ, et al., 2012. Compression behaviour of natural and reconstituted clays. Géotechnique, 62(4):291–301. https://doi.org/10.1680/geot.10.P.046

    Article  Google Scholar 

  • Huang MS, Liu YH, Sheng DC, 2010. Simulation of yielding and stress–stain behavior of Shanghai soft clay. Computers and Geotechnics, 38(3):341–353. https://doi.org/10.1016/j.compgeo.2010.12.005

    Article  Google Scholar 

  • Jin YF, Yin ZY, Shen SL, et al., 2016a. Investigation into MOGA for identifying parameters of a critical state based sand model and parameters correlation by factor analysis. Acta Geotechnica, 11(5):1131–1145. https://doi.org/10.1007/s11440-015-0425-5

    Article  Google Scholar 

  • Jin YF, Yin ZY, Shen SL, et al., 2016b. Selection of sand models and identification of parameters using an enhanced genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 40(8): 1219–1240. https://doi.org/10.1002/nag.2487

    Article  Google Scholar 

  • Jin YF, Yin ZY, Riou Y, et al., 2017a. Identifying creep and destructuration related soil parameters by optimization methods. KSCE Journal of Civil Engineering, 21(4): 1123–1134. https://doi.org/10.1007/s12205-016-0378-8

    Article  Google Scholar 

  • Jin YF, Yin ZY, Shen SL, et al., 2017b. A new hybrid realcoded genetic algorithm and its application to parameters identification of soils. Inverse Problems in Science and Engineering, 25(9):1343–1366. https://doi.org/10.1080/17415977.2016.1259315

    Article  MathSciNet  Google Scholar 

  • Karstunen M, Yin ZY, 2010. Modelling time-dependent behaviour of Murro test embankment. Géotechnique, 60(10): 735–749. https://doi.org/10.1680/geot.8.P.027

    Article  Google Scholar 

  • Koppula S, 1981. Statistical estimation of compression index. Geotechnical Testing Journal, 4(2):68–73. https://doi.org/10.1520/GTJ10768J

    Article  Google Scholar 

  • Li G, Zhang JL, Yang Q, 2016. Geotechnical investigations at the Dalian offshore airport, China. Marine Georesources & Geotechnology, 34(8):747–758. https://doi.org/10.1080/1064119X.2015.1087438

    Article  Google Scholar 

  • Liu S, Shao G, Du Y, et al., 2011. Depositional and geotechnical properties of marine clays in Lianyungang, China. Engineering Geology, 121(1-3):66–74. https://doi.org/10.1016/j.enggeo.2011.04.014

    Article  Google Scholar 

  • Miao LC, Zhang JH, Chen YN, 2007. Study on compressibility of Jiangsu marine clay. Chinese Journal of Geotechnical Engineering, 29(11):1711–1714 (in Chinese).

    Google Scholar 

  • Nagaraj T, Murthy BS, 1986. A critical reappraisal of compression index equations. Géotechnique, 36(1):27–32. https://doi.org/10.1680/geot.1986.36.1.27

    Article  Google Scholar 

  • Nath A, DeDalal SS, 2004. The role of plasticity index in predicting compression behaviour of clays. Electronic Journal of Geotechnical Engineering, 9:1–7.

    Google Scholar 

  • Ng CW, Li Q, Liu GB, 2011. Characteristics of onedimensional compressibility of Shanghai clay. Chinese Journal of Geotechnical Engineering, 33(4):630–636 (in Chinese).

    Google Scholar 

  • Ozer M, Isik NS, Orhan M, 2008. Statistical and neural network assessment of the compression index of claybearing soils. Bulletin of Engineering Geology and the Environment, 67(4):537–545. https://doi.org/10.1007/s10064-008-0168-8

    Article  Google Scholar 

  • Park HI, Lee SR, 2011. Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38(4):472–481. https://doi.org/10.1016/j.compgeo.2011.02.011

    Article  Google Scholar 

  • Poles S, Fu Y, Rigoni E, 2009. The effect of initial population sampling on the convergence of multi-objective genetic algorithms. Multiobjective Programming and Goal Programming. Springer, p.123–133.

    Chapter  Google Scholar 

  • Rezania M, Javadi AA, Giustolisi O, 2010. Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression. Computers and Geotechnics, 37(1-3):82–92. https://doi.org/10.1016/j.compgeo.2009.07.006

    Article  Google Scholar 

  • Schwarz G, 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464. https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  MATH  Google Scholar 

  • Shen SL, Chai JC, Hong ZS, et al., 2005. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles and Geomembranes, 23(6):463–485. https://doi.org/10.1016/j.geotexmem.2005.05.002

    Article  Google Scholar 

  • Shen SL, Wu HN, Cui YJ, et al., 2014. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 40:309–323. https://doi.org/10.1016/j.tust.2013.10.013

    Article  Google Scholar 

  • Shen SL, Wang JP, Wu HN, et al., 2015. Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing. Ocean Engineering, 110:174–182. https://doi.org/10.1016/j.oceaneng.2015.10.011

    Article  Google Scholar 

  • Sridharan A, Nagaraj H, 2000. Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties. Canadian Geotechnical Journal, 37(3):712–722. https://doi.org/10.1139/t99-128

    Article  Google Scholar 

  • Sridharan A, Gurtug Y, 2005. Compressibility characteristics of soils. Geotechnical & Geological Engineering, 23(5): 615–634. https://doi.org/10.1007/s10706-004-9112-2

    Article  Google Scholar 

  • Terzaghi K, Peck RB, Mesri G, 1996. Soil Mechanics in Engineering Practice. John Wiley & Sons.

    Google Scholar 

  • Tiwari B, Ajmera B, 2012. New correlation equations for compression index of remolded clays. Journal of Geotechnical and Geoenvironmental Engineering, 138(6): 757–762. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000639

    Article  Google Scholar 

  • Wei DD, Hu ZX, 1980. Experimental study of preconsolidation pressure and compressibility parameters of Shanghai subsoil. Chinese Journal of Geotechnical Engineering, 2(4):13–22 (in Chinese).

    Google Scholar 

  • Wroth C, Wood D, 1978. The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, 15(2):137–145. https://doi.org/10.1139/t78-014

    Article  Google Scholar 

  • Wu CJ, Ye GL, Wang JH, 2014. Relationship between compression index and natural water content of Shanghai clay. Rock and Soil Mechanics, 35(11):3184–3190 (in Chinese).

    Google Scholar 

  • Wu CJ, Ye GL, Zhang LL, et al., 2015. Depositional environment and geotechnical properties of Shanghai clay: a comparison with Ariake and Bangkok clays. Bulletin of Engineering Geology and the Environment, 74(3):717–732. https://doi.org/10.1007/s10064-014-0670-0

    Article  Google Scholar 

  • Wu HN, Shen SL, Ma L, et al., 2015. Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Marine Georesources & Geotechnology, 33(6):532–541. https://doi.org/10.1080/1064119X.2014.954180

    Article  Google Scholar 

  • Yao YP, Sun DA, 2000. Application of Lade’s criterion to Cam-clay model. Journal of Engineering Mechanics, 126(1):112–119. https://doi.org/10.1061/(asce)0733-9399(2000)126:1(112)

    Article  Google Scholar 

  • Yao YP, Hou W, Zhou AN, 2009. UH model: three dimensional unified hardening model for overconsolidated clays. Géotechnique, 59(5):451–469. https://doi.org/10.1680/geot.2007.00029

    Article  Google Scholar 

  • Yin JH, 1999. Properties and behaviour of Hong Kong marine deposits with different clay contents. Canadian Geotechnical Journal, 36(6):1085–1095. https://doi.org/10.1139/t99-068

    Article  MathSciNet  Google Scholar 

  • Yin JH, 2002. Stress-strain strength characteristics of a marine soil with different clay contents. Geotechnical Testing Journal, 25(4):459–462. https://doi.org/10.1520/GTJ11298J

    Google Scholar 

  • Yin ZY, Hicher PY, 2008. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12):1515–1535. https://doi.org/10.1002/nag.684

    Article  MATH  Google Scholar 

  • Yin ZY, Wang JH, 2012. A one-dimensional strain-rate based model for soft structured clays. Science China Technological Sciences, 55(1):90–100. https://doi.org/10.1007/s11431-011-4513-y

    Article  Google Scholar 

  • Yin ZY, Chang CS, Hicher PY, et al., 2009. Micromechanical analysis of kinematic hardening in natural clay. International Journal of Plasticity, 25(8):1413–1435. https://doi.org/10.1016/j.ijplas.2008.11.009

    Article  MATH  Google Scholar 

  • Yin ZY, Chang CS, Karstunen M, et al., 2010. An anisotropic elastic-viscoplastic model for soft clays. International Journal of Solids and Structures, 47(5):665–677. https://doi.org/10.1016/j.ijsolstr.2009.11.004

    Article  MATH  Google Scholar 

  • Yin ZY, Karstunen M, Chang CS, et al., 2011. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering, 137(11):1103–1113. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000527

    Article  Google Scholar 

  • Yin ZY, Xu Q, Hicher PY, 2013. A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotechnica, 8(5):509–523. https://doi.org/10.1007/s11440-013-0206-y

    Article  Google Scholar 

  • Yin ZY, Zhu QY, Yin JH, et al., 2014. Stress relaxation coefficient and formulation for soft soils. Géotechnique Letters, 4(1):45–51. https://doi.org/10.1680/geolett.13.00070

    Article  Google Scholar 

  • Yin ZY, Yin JH, Huang HW, 2015. Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modelling. Marine Georesources & Geotechnology, 33(1):79–91. https://doi.org/10.1080/1064119X.2013.797060

    Article  Google Scholar 

  • Yoon GL, Kim BT, Jeon SS, 2004. Empirical correlations of compression index for marine clay from regression analysis. Canadian Geotechnical Journal, 41(6):1213–1221. https://doi.org/10.1139/t04-057

    Article  Google Scholar 

  • Zhu QY, Jin YF, Yin ZY, et al., 2013. Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(11):767–777. https://doi.org/10.1631/jzus.A1300156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ji.

Additional information

Project supported by the National Natural Science Foundation of China (No. 41002091)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Zx., Ji, H., Yu, C. et al. EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application. J. Zhejiang Univ. Sci. A 19, 211–224 (2018). https://doi.org/10.1631/jzus.A1700089

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1700089

Key words

CLC number

关键词

Navigation