Skip to main content
Log in

Predicting the Mix Proportions of Concrete Containing Calcined Clay Using Hybridized CNN and XGB and Employing the Shapley Method for Sensitivity Analysis

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The use of calcined clay as supplementary cementitious materials to blend with Portland cement has been increased since it resulted in many environmental advantages such as reducing CO2 emission. Moreover, compressive strength as one of the most important mechanical properties of concrete presents its performance. Concrete with good compressive strength needs a suitable mix design proportions, and computing its proportions is complex and time-consuming containing multiple phases. Recently, the application of machine and deep learning in prediction has shown promising results in civil engineering. Therefore, in this paper, predictive models have been developed by the use of a 1D convolution neural network (CNN) and extreme gradient boosting (XGB) to forecast the mix proportions of concrete. Also, to enhance the performance of CNN and XGB, the hyperband optimization algorithm as a novel hyperparameter optimization algorithm has been applied to be hybridized with the mentioned models. 714 sets of concrete are collected from published literature and used in this experiment. The error of both prediction models is low, and the average prediction accuracy (\({R}^{2}\) score) is higher than 0.96. Furthermore, instead of using empirical methods of computing mixture design which can be complex and time-consuming, machine learning models can be developed and applied. Moreover, sensitivity analysis was applied to evaluate the effect of input features on output features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request which is explain below: The data that have been collected and been used in this study are available in excel format upon reasonable request.

Notes

  1. Not a Number.

References

  1. Mazloom, M.; Mirzamohammadi, S.: Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures. Mag. Concr. Res. (2021). https://doi.org/10.1680/jmacr.19.00401

    Article  Google Scholar 

  2. Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S.: Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49–56 (2018). https://doi.org/10.1016/j.cemconres.2017.08.017

    Article  Google Scholar 

  3. A. K. Scrivener; A. Dekeukelaere; L.G. F. Avet, Financial Attractiveness of LC3, École Polytech. Fédérale Lausanne. (2019)

  4. Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T.: Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 24, 709–718 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.037

    Article  Google Scholar 

  5. Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 42, 780–786 (2011). https://doi.org/10.1016/j.advengsoft.2011.05.016

    Article  Google Scholar 

  6. Uysal, M.; Tanyildizi, H.: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27, 404–414 (2012). https://doi.org/10.1016/j.conbuildmat.2011.07.028

    Article  Google Scholar 

  7. Dantas, A.T.A.; Batista Leite, M.; de Jesus Nagahama, K.: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Constr. Build. Mater. 38, 717–722 (2013)

    Article  Google Scholar 

  8. Chou, J.-S.; Tsai, C.-F.; Pham, A.-D.; Lu, Y.-H.: Machine learning in concrete strength simulations: multi-nation data analytics. Constr. Build. Mater. 73, 771–780 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.054

    Article  Google Scholar 

  9. Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R.: Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 18, 1753–1758 (2014). https://doi.org/10.1007/s12205-014-0524-0

    Article  Google Scholar 

  10. Murugan, S.B.; Ganesh, G.M.; Santhi, A.S.: Regression models for prediction of compressive strength of high volume fly ash (HVFA) concrete. Arab. J. Sci. Eng. 39, 1659–1669 (2014). https://doi.org/10.1007/s13369-013-0783-y

    Article  Google Scholar 

  11. Pham, A.-D.; Hoang, N.-D.; Nguyen, Q.-T.: Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 30, 06015002 (2016). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000506

    Article  Google Scholar 

  12. Mozumder, R.A.; Roy, B.; Laskar, A.I.: Support vector regression approach to predict the strength of FRP confined concrete. Arab. J. Sci. Eng. 42, 1129–1146 (2017). https://doi.org/10.1007/s13369-016-2340-y

    Article  Google Scholar 

  13. Dutta, S.; Samui, P.; Kim, D.: Comparison of machine learning techniques to predict compressive strength of concrete. Comput. Concr. 21, 463–470 (2018)

    Google Scholar 

  14. Naderpour, H.; Rafiean, A.H.; Fakharian, P.: Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 16, 213–219 (2018). https://doi.org/10.1016/j.jobe.2018.01.007

    Article  Google Scholar 

  15. Kaplan, G.; Yaprak, H.; Memiş, S.; Alnkaa, A.: Artificial neural network estimation of the effect of varying curing conditions and cement type on hardened concrete properties. Buildings (2019). https://doi.org/10.3390/buildings9010010

    Article  Google Scholar 

  16. Feng, D.-C.; Liu, Z.-T.; Wang, X.-D.; Chen, Y.; Chang, J.-Q.; Wei, D.-F.; Jiang, Z.-M.: Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach. Constr. Build. Mater. 230, 117000 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117000

    Article  Google Scholar 

  17. Kandiri, A.; Sartipi, F.; Kioumarsi, M.: Predicting compressive strength of concrete containing recycled aggregate using modified ann with different optimization algorithms. Appl. Sci. 11, 1–19 (2021). https://doi.org/10.3390/app11020485

    Article  Google Scholar 

  18. Hosein Ghanemi, A.; Tarighat, A.: Data Mining Mechanical properties of concretes containing calcined clays as supplementary cementitious materials in concrete. Concr. Res. 15, 85–98 (2022)

    Google Scholar 

  19. Hosein Ghanemi, A.; Tarighat, A.: Use of different hyperparameter optimization algorithms in ANN for predicting the compressive strength of concrete containing calcined clay. Pract. Period. Struct. Des. Constr. (2022). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000683

    Article  Google Scholar 

  20. Abunassar, N.; Alas, M.; Ali, S.I.A.: Prediction of compressive strength in self-compacting concrete containing fly ash and silica fume using ANN and SVM. Arab. J. Sci. Eng. 48, 5171–5184 (2023). https://doi.org/10.1007/s13369-022-07359-3

    Article  Google Scholar 

  21. Hosseinzadeh, M.; Dehestani, M.; Hosseinzadeh, A.: Prediction of mechanical properties of recycled aggregate fly ash concrete employing machine learning algorithms. J. Build. Eng. 76, 107006 (2023). https://doi.org/10.1016/j.jobe.2023.107006

    Article  Google Scholar 

  22. Ji, T.; Lin, T.; Lin, X.: A concrete mix proportion design algorithm based on artificial neural networks. Cem. Concr. Res. 36, 1399–1408 (2006). https://doi.org/10.1016/j.cemconres.2006.01.009

    Article  Google Scholar 

  23. Adil, M.; Ullah, R.; Noor, S.; Gohar, N.: Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural Comput. Appl. 34, 8355–8363 (2022). https://doi.org/10.1007/s00521-020-05305-8

    Article  Google Scholar 

  24. Alghamdi, S.J.: Determining the mix design method for normal strength concrete using machine learning. J. Umm Al-Qura Univ. Eng. Archit. 14, 95–104 (2023). https://doi.org/10.1007/s43995-023-00022-4

    Article  Google Scholar 

  25. Prasad, B.K.R.; Eskandari, H.; Reddy, B.V.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23, 117–128 (2009). https://doi.org/10.1016/j.conbuildmat.2008.01.014

    Article  Google Scholar 

  26. Chandwani, V.; Agrawal, V.; Nagar, R.: Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Syst. Appl. 42, 885–893 (2015). https://doi.org/10.1016/j.eswa.2014.08.048

    Article  Google Scholar 

  27. Belalia Douma, O.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28, 707–718 (2017). https://doi.org/10.1007/s00521-016-2368-7

    Article  Google Scholar 

  28. Getahun, M.A.; Shitote, S.M.; Abiero Gariy, Z.C.: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Constr. Build. Mater. 190, 517–525 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.097

    Article  Google Scholar 

  29. Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B.: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 210, 713–719 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.189

    Article  Google Scholar 

  30. Saha, P.; Debnath, P.; Thomas, P.: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput. Appl. 32, 7995–8010 (2020). https://doi.org/10.1007/s00521-019-04267-w

    Article  Google Scholar 

  31. Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A.: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 230, 117021 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117021

    Article  Google Scholar 

  32. Golafshani, E.M.; Behnood, A.; Arashpour, M.: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Constr. Build. Mater. 232, 117266 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117266

    Article  Google Scholar 

  33. Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F.: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 308, 125021 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125021

    Article  Google Scholar 

  34. Farooq, F.; Ahmed, W.; Akbar, A.; Aslam, F.; Alyousef, R.: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners. J. Clean. Prod. 292, 126032 (2021). https://doi.org/10.1016/j.jclepro.2021.126032

    Article  Google Scholar 

  35. Farooq, F.; Czarnecki, S.; Niewiadomski, P.; Aslam, F.; Alabduljabbar, H.; Ostrowski, K.A.; Śliwa-Wieczorek, K.; Nowobilski, T.; Malazdrewicz, S.: A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash. Materials (Basel) 14, 4934 (2021). https://doi.org/10.3390/ma14174934

    Article  Google Scholar 

  36. Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A.: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature. Materials (Basel) 14, 4222 (2021). https://doi.org/10.3390/ma14154222

    Article  Google Scholar 

  37. Rathakrishnan, V.; Beddu, S.B.; Ahmed, A.N.: Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms. Sci. Rep. 12, 9539 (2022). https://doi.org/10.1038/s41598-022-12890-2

    Article  Google Scholar 

  38. Amin, M.N.; Khan, K.; Abu Arab, A.M.; Farooq, F.; Eldin, S.M.; Javed, M.F.: Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): optimization and hyper-tuning. J. Mater. Res. Technol. 25, 1495–1536 (2023)

    Article  Google Scholar 

  39. Al-Taai, S.R.; Azize, N.M.; Thoeny, Z.A.; Imran, H.; Bernardo, L.F.A.; Al-Khafaji, Z.: XGBoost prediction model optimized with bayesian for the compressive strength of eco-friendly concrete containing ground granulated blast furnace slag and recycled coarse aggregate. Appl. Sci. 13, 8889 (2023). https://doi.org/10.3390/app13158889

    Article  Google Scholar 

  40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  41. Cha, Y.-J.; Choi, W.; Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Civ. Infrastruct. Eng. 32, 361–378 (2017). https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  42. Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J.: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data. Neurocomputing 275, 1308–1317 (2018). https://doi.org/10.1016/j.neucom.2017.09.069

    Article  Google Scholar 

  43. Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X.: Compressive strength prediction of recycled concrete based on deep learning. Constr. Build. Mater. 175, 562–569 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.169

    Article  Google Scholar 

  44. Yanez-Borjas, J.J.; Valtierra-Rodriguez, M.; Machorro-Lopez, J.M.; Camarena-Martinez, D.; Amezquita-Sanchez, J.P.: Convolutional neural network-based methodology for detecting, locating and quantifying corrosion damage in a truss-type bridge through the autocorrelation of vibration signals. Arab. J. Sci. Eng. 48, 1119–1141 (2023). https://doi.org/10.1007/s13369-022-06731-7

    Article  Google Scholar 

  45. Mishra, S.: Comparison of IS, BS and ACI methods of concrete mix design and proposing function equations based design. Int. J. Civil Struct. Environ. Infrastruct. Eng. Res. Dev. 2, 22–56 (2012)

    Google Scholar 

  46. Gopinath, S.; Murthy, A.; Ramya, D.; Iyer, N.: Optimised mix design for normal strength and high performance concrete using particle packing method. Arch. Civ. Eng. 57, 357–371 (2011). https://doi.org/10.2478/v.10169-011-0026-0

    Article  Google Scholar 

  47. Neshat, M.; Adeli, A.; Sepidnam, G.; Sargolzaei, M.: Predication of concrete mix design using adaptive neural fuzzy inference systems and fuzzy inference systems. Int. J. Adv. Manuf. Technol. 63, 373–390 (2012). https://doi.org/10.1007/s00170-012-3914-9

    Article  Google Scholar 

  48. Gupta, S.: Concrete mix design using artificial neural network. J. Today’s Ideas-Tomorrow’s Technol. 1, 29–43 (2013)

    Article  Google Scholar 

  49. Ziolkowski, P.; Niedostatkiewicz, M.: Machine learning techniques in concrete mix design. Materials (Basel) 12, 1256 (2019). https://doi.org/10.3390/ma12081256

    Article  Google Scholar 

  50. Kalman Šipoš, T.; Miličević, I.; Siddique, R.: Model for mix design of brick aggregate concrete based on neural network modelling. Constr. Build. Mater. 148, 757–769 (2017)

    Article  Google Scholar 

  51. Tipu, R.K.; Panchal, V.R.; Pandya, K.S.: Multi-objective optimized high-strength concrete mix design using a hybrid machine learning and metaheuristic algorithm. Asian J. Civ. Eng. 24, 849–867 (2023). https://doi.org/10.1007/s42107-022-00535-8

    Article  Google Scholar 

  52. Lundberg, S.M.; Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I.; Von Luxburg, U.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R. (Eds.) Adv Neural Inf. Process. Syst. Curran Associates Inc (2017)

    Google Scholar 

  53. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020). https://doi.org/10.1038/s42256-019-0138-9

    Article  Google Scholar 

  54. Zhang, S.; Zhang, C.; Yang, Q.: Data preparation for data mining. Appl. Artif. Intell. 17, 375–381 (2003). https://doi.org/10.1080/713827180

    Article  Google Scholar 

  55. Sahoo, K.; Samal, A.K.; Pramanik, J.; Pani, S.K.: Exploratory data analysis using python. Int. J. Innov. Technol. Explor. Eng. 8, 4727–4735 (2019)

    Article  Google Scholar 

  56. Chanakya, P.; Behera, D.: Experimental study on compressive strength of concrete by partial replacement of cement with metakaolin. Int. J. Sci. Eng. Technol. Res. 05, 5354–5358 (2016). https://doi.org/10.25560/44528

    Article  Google Scholar 

  57. Ferreira, R.M.; Castro-Gomes, J.P.; Costa, P.; Malheiro, R.: Effect of metakaolin on the chloride ingress properties of concrete. KSCE J. Civ. Eng. 20, 1375–1384 (2016). https://doi.org/10.1007/s12205-015-0131-8

    Article  Google Scholar 

  58. Scrivener, K.; Favier, A.: Calcined clays for sustainable concrete. Springer, Dordrecht (2015)

    Book  Google Scholar 

  59. Razak, H.A.; Wong, H.S.: Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cem. Concr. Res. 35, 688–695 (2005). https://doi.org/10.1016/j.cemconres.2004.05.040

    Article  Google Scholar 

  60. Martirena Hernandez, J.F.; Favier, A.; Scrivener, K.: Calcined clays for sustainable concrete. Springer, Dordrecht (2018)

    Book  Google Scholar 

  61. Zhou, D.; Wang, R.; Tyrer, M.; Wong, H.; Cheeseman, C.: Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. J. Clean. Prod. 168, 1180–1192 (2017). https://doi.org/10.1016/j.jclepro.2017.09.098

    Article  Google Scholar 

  62. R.R. Raj; E.B.P. Pillai (2008) Shear strength of high performance concrete containing high reactivity metakaolin under direct shearing, Int. J. Environ. Sci. Technol.

  63. Vu, D.; Stroeven, P.; Bui, V.: Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete. Cem. Concr. Compos. 23, 471–478 (2001). https://doi.org/10.1016/S0958-9465(00)00091-3

    Article  Google Scholar 

  64. Narmatha, M.; Felixkala, D.T.: Meta kaolin–the best material for replacement of cement in concrete. IOSR J. Mech. Civ. Eng. 13, 66–71 (2016). https://doi.org/10.9790/1684-1304016671

    Article  Google Scholar 

  65. Opoku Amankwah, E.: Influence of calcined clay pozzolana on strength characteristics of portland cement concrete. Int. J. Mater. Sci. Appl. 3, 410 (2014)

    Google Scholar 

  66. Mermerdaş, K.; Gesoǧlu, M.; Güneyisi, E.; Özturan, T.: Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr. Build. Mater. 37, 766–774 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.077

    Article  Google Scholar 

  67. Saand, A.; Keerio, M.A.; Khan Bangwar, D.: Effect of metakaolin developed from local natural material soorh on workability, compressive strength, ultrasonic pulse velocity and drying shrinkage of concrete. Archit. Civ. Eng. Environ. 10, 115–122 (2017)

    Google Scholar 

  68. Yeh, I.-C.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28, 1797–1808 (1998). https://doi.org/10.1016/S0008-8846(98)00165-3

    Article  Google Scholar 

  69. M. Vogt, (2019) An overview of deep learning and its applications, 178–202. https://doi.org/10.1007/978-3-658-23751-6_17

  70. Lecun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  71. Sánchez-Reolid, R.; López de la Rosa, F.; López, M.T.; Fernández-Caballero, A.: One-dimensional convolutional neural networks for low/high arousal classification from electrodermal activity. Biomed. Signal Process. Control 71, 103203 (2022)

    Article  Google Scholar 

  72. Zhou, Z.-H.: Ensemble learning. Encycl. Biometrics (2009). https://doi.org/10.1007/978-0-387-73003-5_293

    Article  Google Scholar 

  73. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002). https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  MathSciNet  Google Scholar 

  74. Al Daoud, E.: Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. Int. J. Comput. Inf. Eng. 13, 6–10 (2019)

    Google Scholar 

  75. Zhang, S.; Xu, J.; Huang, E.; Chen, C.-H.: A new optimal sampling rule for multi-fidelity optimization via ordinal transformation. IEEE Int. Conf. Autom. Sci. Eng IEEE 2016, 670–674 (2016). https://doi.org/10.1109/COASE.2016.7743467

    Article  Google Scholar 

  76. L. Bottou (2010) Large-scale machine learning with stochastic gradient descent, in: Proc. COMPSTAT’2010, Physica-Verlag HD, Heidelberg, 177–186. https://doi.org/10.1007/978-3-7908-2604-3_16

  77. Jamieson, K.; Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. Proc. 19th Int Conf. Artif. Intell. Stat. AISTATS 2016, 240–248 (2015)

    Google Scholar 

  78. Yang, L.; Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020). https://doi.org/10.1016/j.neucom.2020.07.061

    Article  Google Scholar 

  79. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Morgan Kaufmann 2, 1137–1143 (1995)

    Google Scholar 

  80. S. Salman; X. Liu, Overfitting mechanism and avoidance in deep neural networks, (2019). http://arxiv.org/abs/1901.06566

  81. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hosein Ghanemi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosein Ghanemi, A., Tarighat, A. Predicting the Mix Proportions of Concrete Containing Calcined Clay Using Hybridized CNN and XGB and Employing the Shapley Method for Sensitivity Analysis. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09061-y

Keywords

Navigation