Skip to main content
Log in

Statistical and neural network assessment of the compression index of clay-bearing soils

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The compression index is used to estimate the consolidation settlement of clay-bearing soils. As the determination of compression index from oedometer tests is relatively time-consuming, empirical equations based on index properties can be useful. In this study the performance of widely used single and multi-variable empirical equations was evaluated using a database consisting of 135 test data. New empirical equations were developed utilizing least square regression analysis. In addition, an artificial neural network (ANN) with eight input variables was also developed to estimate the compression index. It was concluded that ANN provides the best results.

Résumé

L’indice de compression est utilisé pour estimer le tassement de consolidation des sols argileux. Comme la détermination de cet indice à partir des essais oedométriques prend quelque temps, des équations empiriques basées sur des indices géotechniques peuvent être utiles. Dans cette étude, l’intérêt d’équations empiriques à une ou plusieurs variables a été évalué à partir d’une base de données comportant 135 résultats d’essais. De nouvelles équations empiriques ont été développées à partir d’une analyse de régression par la méthode des moindres carrés. De plus, un réseau de neurones artificiel (ANN) avec huit variables d’entrée a été développé pour estimer l’indice de compression. La conclusion est que l’ANN donne les meilleurs résultats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Khafaji AWN, Andersland OB (1992) Equations for compression index approximation. J Geotech Eng ASCE 118(1):148–153

    Article  Google Scholar 

  • Alvarez Grima M, Babuska R (1999) Fuzzy model for the prediction of unconfined compressive strength of rock samples. Int J Rock Mech Min Sci 36(3):339–349

    Article  Google Scholar 

  • ASTM (American Society for Testing and Materials) D 2435 (1996) Standard test method for one–dimensional consolidation properties of soils. Annual book of ASTM standards, West Conshohocken, United States

  • Azzouz AS, Krizek RJ, Corotis RB (1976) Regression analysis of soil compressibility. Soils and Foundations. Jpn Soc Soil Mech Found Eng 16(2):19–29

    Google Scholar 

  • Bowles JE (1989) Physical and geotechnical properties of soils. McGraw-Hill Book Company, New York

    Google Scholar 

  • Bowles JE (1996) Foundation analysis and design, 5th edn. McGraw-Hill Company, New York, p 88

    Google Scholar 

  • Carrier WDIII (1985) Consolidation parameters derived from index tests. Géotechnique 35(2):211–213

    Google Scholar 

  • Cozzolino VM (1961) Statistical forecasting of compression index. In: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering Paris 1: 51–53

  • Finol J, Guo YK, Jing XD (2001) A rule based fuzzy model for the prediction of petrophysical rock parameters. J Petrol Sci Eng 29(2):97–113

    Article  Google Scholar 

  • Giasi CI, Cherubini C, Paccapelo F (2003) Evaluation of compression index of remoulded clays by means of Atterberg limits. Bull Eng Geol Environ 62(4):333–340

    Article  Google Scholar 

  • Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition. Eng Geologist 66:39–51

    Article  Google Scholar 

  • Helenelund KV (1951) On consolidation and settlement of loaded soil layers. Dissertation, Finland Technical Institute, Helsinki, Finland

  • Herrero OR (1980) Universal compression index equation. J Geotech Eng Div ASCE 106(11):1179–1200

    Google Scholar 

  • Herrero OR (1983a) Universal compression index equation; Discussion. J Geotech Eng Div ASCE 109(10):1349

    Google Scholar 

  • Herrero OR (1983b) Universal compression index equation; Closure. J Geotech Eng Div ASCE 109(5):755–761

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Hough BK (1957) Basic Soils Engineering. The Ronald Press Company, New York, pp 114–115

    Google Scholar 

  • Koppula SD (1981) Statistical estimation of compression index. Geotech Test J 4(2):68–73

    Google Scholar 

  • Masters T (1993) Practical Neural Network Recipes in C++. Academic Press, San Diego, p 493

    Google Scholar 

  • Mayne PW (1980) Cam-clay predictions of undrained strength. J Geotech Eng Div ASCE 106(11):1219–1242

    Google Scholar 

  • Nagaraj TS, Murty BRS (1985) Prediction of the preconsolidation pressure and recompression index of soils. Geotech Test J 8(4):199–202

    Google Scholar 

  • Nagaraj TS, Murthy BRS (1986) A critical reappraisal of compression index equations. Géotechnique 36(1):27–32

    Google Scholar 

  • Nakase A, Kamei T, Kusakabe O (1988) Constitute parameters estimated by plasticity index. J Geotech Eng ASCE 114:844–858

    Google Scholar 

  • Nishida Y (1956) A brief note on compression index of soil. J Soil Mech Found Eng Div ASCE 82:1027–1–1027–14

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing, vol. 1, Chap. 8. MIT Press, Cambridge, p 1208

    Google Scholar 

  • Schmertmann JH (1953) Estimating the true consolidation behavior of clay from laboratory test results. Proc. ASCE 79, Separate 311, pp 26

  • Shahin MA, Maier HR, Jaksa MB (2002) Predicting settlement of shallow foundations using neural networks. J Geotech Geoenviron Eng 128(9):785–793

    Article  Google Scholar 

  • Skempton AW (1944) Notes on the compressibility of clays. Q J Geol Soc Lond 100:119–135

    Article  Google Scholar 

  • Sowers GB (1970) Introductory soil mechanics and foundations, 3rd edn. The Macmillan Company, Collier-Macmillan Limited, London, p 102

    Google Scholar 

  • Sridharan A, Nagaraj HB (2000) Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties. Can Geotech J 37(3):712–722

    Article  Google Scholar 

  • Terzaghi K, Peck RB (1967) Soil mechanics in engineering practice, 2nd edn. Wiley, New York, p 73

    Google Scholar 

  • Twomey JM, Smith AE (1997) Validation and verification. In: Kartam N, Flood I, Garrett JH (eds) Artifical neural networks for civil engineers: fundamentals and applications. ASCE, New York, pp 44–64

    Google Scholar 

  • Wroth CP, Wood DM (1978) The correlation of index properties with some basic engineering properties of soils. Can Geotech J 15:137–145

    Google Scholar 

  • Yılmaz I (2006) Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity. Eng Geol 85:295–301

    Article  Google Scholar 

  • Yin J–H (1999) Properties and behavior of Hong Kong marine deposits with different clay content. Can Geotech J 36(6):1085–1095

    Article  Google Scholar 

  • Yoon GL, Kim BT, Jeon SS (2004) Empirical correlations of compression index for marine clay from regression analysis. Can Geotech J 41(6):1213–1221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ozer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozer, M., Isik, N.S. & Orhan, M. Statistical and neural network assessment of the compression index of clay-bearing soils. Bull Eng Geol Environ 67, 537–545 (2008). https://doi.org/10.1007/s10064-008-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-008-0168-8

Keywords

Mots clés

Navigation