Skip to main content
Log in

Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel structures in railway infrastructures

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Steel structures are widely used in railway infrastructures. Their stress state is the most important determinant of the safety of these structures. The elasto-magnetic (EM) sensor is the most promising for stress monitoring of in-service steel structures. Nevertheless, the necessity of magnetic excitation to saturation due to the use of a secondary coil for signal detection, keeps from its engineering application. In this paper, a smart elasto-magneto-electric (EME) sensor using magneto-electric (ME) sensing units to take the place of the secondary coil has been exploited for the first time. The ME sensing unit is made of ME laminated composites, which has an ultrahigh ME voltage coefficient and can measure the magnetic induction simply and precisely. Theoretical analysis and characterization experiments firstly conducted on the ME laminated composites showed that the ME sensing units can be applied in the EM sensor for improved performance in stress monitoring. A tension test of a steel bar was carried out to characterize our smart EME sensor and the results showed high accuracy and sensitivity. The present smart EME sensor is a promising tool for stress monitoring of steel structures in railway and other civil infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels, K.A., Kwun, H., Hanley, J.J., 1996. Magnetostrictive sensors for the characterization of corrosion in rebars and prestressing strands. Proceedings of SPIE, 2946:40–50. [doi:10.1117/12.259151]

    Article  Google Scholar 

  • Bozorth, R.M., 1951. Ferromagnetism. IEEE Press, New York, USA.

    Google Scholar 

  • Brophy, J.W., Brett, C.R., 1996. Guided UT wave inspection of insulated feedwater piping using magnetostrictive sensors. Proceedings of SPIE, 2947:205–209. [doi:10. 1117/12.259168]

    Article  Google Scholar 

  • Cannon, D.F., Pradier, H., 1996. Rail rolling contact fatigue research by the European Rail Research Institute. Wear, 191(1–2):1–13. [doi:10.1016/0043-1648(95)06650-0]

    Article  Google Scholar 

  • Cannon, D.F., Edel, K.O., Grassie, S.L., Sawley, K., 2003. Rail defects: an overview. Fatigue and Fracture of Engineering Materials and Structures, 26(10):865–886. [doi:10. 1046/j.1460-2695.2003.00693.x]

    Article  Google Scholar 

  • Dong, S.X., Li, J.F., Viehland, D., 2003. Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Applied Physics Letters, 83(11):2265–2267. [doi:10.1063/1.1611276]

    Article  Google Scholar 

  • Ekberg, A., Kabo, E., 2005. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview. Wear, 258(7–8):1228–1300. [doi:10.1016/j.wear.2004.03.039]

    Google Scholar 

  • GB/T 699-1999. Quality Carbon Structural Steels. National Standard of People’s Republic of China (in Chinese).

  • Jia, Y.M., Or, S.W., Wang, J., Chan, H.L.W., Zhao, X.Y., Luo, H.S., 2007. High magnetoelectric effect in laminated composites of giant magnetostrictive alloy and lead-free piezoelectric ceramic. Journal of Applied Physics, 101(10):104103. [doi:10.1063/1.2732420]

    Article  Google Scholar 

  • Ke, S., Ye, D.P., Zhang, G.J., Su, L.G., 2003. Quick Manual for Magnetic Characteristic Curves of Comman Steels. China Machine Press, Beijing, China (in Chinese).

    Google Scholar 

  • Kleinke, D.K., Uras, H.M., 1994. A magnetostrictive force sensor. Review of Scientific Instruments, 65(5):1699–1710. [doi:10.1063/1.1144863]

    Article  Google Scholar 

  • Kvasnica, B., Fabo, P., 1996. Highly precise non-contact instrumentation for magnetic measurement of mechanical stress in low-carbon steel wires. Measurement Science and Technology, 7(5):763–767. [doi:10.1088/0957-0233/7/5/007]

    Article  Google Scholar 

  • Sasada, I., Uramoto, S., Harada, K., 1986. Noncontact torque sensors using magnetic heads and a magnetostrictive layer on the shaft surface-application of plasma jet spraying process. IEEE Transactions on Magnetics, 22(5):406–408. [doi:10.1109/TMAG.1986.1064383]

    Article  Google Scholar 

  • Sasaki, T., Takahashi, S., Kanematsu, Y., Satoh, Y., Iwafuchi, K., Ishida, M., Morii, Y., 2008. Measurement of residual stresses in rails by neutron diffraction. Wear, 265(9–10): 1402–1407. [doi:10.1016/j.wear.2008.04.047]

    Article  Google Scholar 

  • Seekircher, J., Hoffmann, B., 1989. New magnetoelastic force sensor using amorphous alloys. Sensors and Actuators A: Physical, 22(1–3):401–405. [doi:10.1016/0924-4247(89) 80002-0]

    Google Scholar 

  • Tang, D.D., Huang, S.L., Chen, W.M., Jiang, J.S., 2008. Study of a steel strand tension sensor with difference single bypass excitation structure based on the magneto-elastic effect. Smart Materials and Structures, 17(2):025019. [doi:10.1088/0964-1726/17/2/025019]

    Article  Google Scholar 

  • Wang, G.D., Wang, M.L., 2004. The utilities of U-shape EM sensor in stress monitoring. Journal of Structural Engineering and Mechanics, 17(3–4):291–302.

    Article  Google Scholar 

  • Wang, M.L., Koontz, S., Jarosevic, A., 1998. Monitoring of Cable Forces Using Magneto-Elastic Sensors. Proceedings of 2nd US-China Symposium Workshop on Recent Developments and Future Trends of Computational Mechanics in Structural Engineering, Dalian, China, p.337–349.

  • Wang, M.L., Lloyd, G.M., Hovorka, O., 2001. Development of a remote coil magnetoelastic stress sensor for steel cables. Proceedings of SPIE, 4337:122–128. [doi:10.1117/12.435584]

    Article  Google Scholar 

  • Wang, Y.J., Or, S.W., Chan, H.L.W., Zhao, X.Y., Luo, H.S., 2008a. Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal. Applied Physics Letters, 92(12):123510. [doi:10.1063/1.2901162]

    Article  Google Scholar 

  • Wang, Y.J., Cheung, K.F., Or, S.W., Chan, H.L.W., Luo, H.S., 2008b. PMN-PT single crystal and Terfenol-D alloy magnetoelectric laminated composites for electromagnetic device applications. Journal of the Ceramic Society of Japan, 116(1352):540–544. [doi:10.2109/jcersj2.116.540]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 50908202, 51178426, 90915008, and 60801011), the Zhejiang Provincial Natural Science Foundation, China (No. Y1090382), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 122012), and the Key Science and Technology Innovation Team Program of Zhejiang Province, China (No. 2010R50034)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Yf., Zhang, R., Zhao, Y. et al. Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel structures in railway infrastructures. J. Zhejiang Univ. Sci. A 12, 895–901 (2011). https://doi.org/10.1631/jzus.A11GT007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A11GT007

Key words

CLC number

Navigation