Skip to main content
Log in

A Climbing Robot for Steel Bridge Inspection

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

As an effort of automating the bridge inspection process, this paper presents a new development of an adaptable tank-like robot, which can climb on steel structures to collect data and perform inspection. While most current steel climbing mobile robots are designed to work on flat steel surface, our proposed tank-like robot design is capable of climbing on different steel structural shapes (e.g., cylinder, cube) by using reciprocating mechanism and magnetic roller-chains. The developed robot can pass through the joints and transition from one surface to the other (e.g., from flat to curving surfaces). A prototype robot integrating multiple sensors (hall-effects, IR, IMU, Eddy current and cameras), has been developed by coping with variety of strict concerns including tight dimension, effective adhesive and climbing adaptation. Rigorous analysis of robot kinematics, adhesive force, sliding and turn-over failure and motor power has been conducted to certify the stability of the proposed design. The theory calculations can serve as an useful framework for designing future steel climbing robots. The cameras and Eddy current sensor is integrated on Robot for visual and in-depth fatigue crack inspection of steel structures. Experimental results and field deployments on more than twenty steel bridges confirm the adhesive, climbing, inspection capability of the robot. Video of this deployment can be seen in this link: https://youtu.be/1Wl9Trd3EoM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FHWA: U.S D epartment of transportation highway administration, national bridge inventory data. http://www.fhwa.dot.gov/bridge/nbi.cfm (2019)

  2. Stark, T.D., Benekohal, R., Fahnestock, L.A., LaFave, J.M., He, J., Wittenkeller, C.: I-5 skagit river bridge collapse review. J. Perform. Constr. Facil. 30(6), 04016061 (2016)

    Article  Google Scholar 

  3. McCrea, A., Chamberlain, D., Navon, R.: Automated inspection and restoration of steel bridges – a critical review of methods and enabling technologies. Autom. Constr. 11(4), 351–373 (2002)

    Article  Google Scholar 

  4. La, H.M., Dinh, T.H., Pham, N.H., Ha, Q.P., Pham, A.Q.: Automated robotic monitoring and inspection of steel structures and bridges. Robotica 37(5), 947–967 (2019)

    Article  Google Scholar 

  5. Fischer, W., Tâche, F., Siegwart, R.: Magnetic wall climbing robot for thin surfaces with specific obstacles. In: Laugier, C, Siegwart, R (eds.) Field and Service Robotics: Results of the 6th International Conference, pp 551–561. Springer, Berlin (2008)

  6. Fischer, W., Caprari, G., Siegwart, R., Moser, R.: Locomotion system for a mobile robot on magnetic wheels with both axial and circumferential mobility and with only an 8-mm height for generator inspection with the rotor still installed. IEEE Trans. Ind. Electron. 58(12), 5296–5303 (2011)

    Article  Google Scholar 

  7. Ratsamee, P., Kriengkomol, P., Arai, T., Kamiyama, K., Mae, Y., Kiyokawa, K., Mashita, T., Uranishi, Y., Takemura, H.: A hybrid flying and walking robot for steel bridge inspection. In: IEEE Inter. Symp. on Safety, Security, and Res. Robo., pp. 62–67 (2016)

  8. Wang, H., Yamamoto, A.: Analyses and solutions for the buckling of thin and flexible electrostatic inchworm climbing robots. IEEE Trans. Robot. 33(4), 889–900 (2017)

    Article  Google Scholar 

  9. Shen, W., Gu, J., Shen, Y.: Permanent magnetic system design for the wall-climbing robot. In: IEEE International Conference Mechatronics and Automation, 2005, vol. 4, pp. 2078–2083 (2005)

  10. Mazumdar, A., Asada, H.H.: Mag-foot: A steel bridge inspection robot. In: 2009. IROS 2009. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1691–1696 (2009)

  11. Wang, R., Kawamura, Y.: A magnetic climbing robot for steel bridge inspection. In: 2014 11th World Congress on Intelligent Control and Automation (WCICA), pp. 3303–3308 (2014)

  12. Tche, F., Fischer, W., Caprari, G., Siegwart, R., Moser, R., Mondada, F.: Magnebike: A magnetic wheeled robot with high mobility for inspecting complex-shaped structures. J. Field Robot. 26(5), 453–476 (2009)

    Article  Google Scholar 

  13. Pack, R.T., Christopher, J., Kawamura, K.: A rubbertuator-based structure-climbing inspection robot. In: 1997. Proceedings., 1997 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1869–1874 (1997)

  14. Abderrahim, M., Balaguer, C., Gimenez, A., Pastor, J.M., Padron, V.M.: Roma: a climbing robot for inspection operations. In: 1999. Proceedings. 1999 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2303–2308 (1999)

  15. Leibbrandt, A., Caprari, G., Angst, U., Siegwart, R.Y., Flatt, R.J., Elsener, B.: Climbing robot for corrosion monitoring of reinforced concrete structures. In: Applied Robotics for the Power Industry (CARPI), the 2nd Intern. Conf. on, pp. 10–15 (2012)

  16. Leon-Rodriguez, H., Hussain, S., Sattar, T.: A compact wall-climbing and surface adaptation robot for non-destructive testing. In: 2012 12th International Conference on Control, Automation and Systems (ICCAS), pp. 404–409 (2012)

  17. San-Millan, A.: Design of a teleoperated wall climbing robot for oil tank inspection. In: 2015 23th Mediterranean Conference on Control and Automation (MED), pp. 255–261 (2015)

  18. Shen, W., Gu, J., Shen, Y.: Proposed wall climbing robot with permanent magnetic tracks for inspecting oil tanks. In: IEEE International Conference Mechatronics and Automation, 2005, vol. 4, pp. 2072–2077 (2005)

  19. Tavakoli, M., Viegas, C., Marques, L., Pires, J.N., deAlmeida, A.T.: Omniclimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures. Robot. Auton. Syst. 61 (9), 997–1007 (2013)

    Article  Google Scholar 

  20. Eich, M., Vgele, T.: Design and control of a lightweight magnetic climbing robot for vessel inspection. In: The 19th Mediterranean Conf. on Control Automation, pp. 1200–1205 (2011)

  21. Caprari, G., Breitenmoser, A., Fischer, W., Hurzeler, C., Tache, F., Siegwart, R., Nguyen, O., Moser, R., Schoeneich, P., Mondada, F.: Highly compact robots for inspection of power plants. J. Field Robot. 29(1), 47–68 (2012)

    Article  Google Scholar 

  22. Cho, K.H., Kim, H.M., Jin, Y.H., Liu, F., Moon, H., Koo, J.C., Choi, H.R.: Inspection robot for hanger cable of suspension bridge: Mechanism design and analysis. IEEE/ASME Trans. Mechatron. 18(6), 1665–1674 (2013)

    Article  Google Scholar 

  23. Zhu, D., Guo, J., Cho, C., Wang, Y., Lee, K.: Wireless mobile sensor network for the system identification of a space frame bridge. IEEE/ASME Trans. Mechatron. 17(3), 499–507 (2012)

    Article  Google Scholar 

  24. Lee, G., Wu, G., Kim, J., Seo, T.: High-payload climbing and transitioning by compliant locomotion with magnetic adhesion. Robot. Auton. Syst. 60(10), 1308–1316 (2012)

    Article  Google Scholar 

  25. Seo, T., Sitti, M.: Tank-like module-based climbing robot using passive compliant joints. IEEE/ASME Trans. Mechatron. 18(1), 397–408 (2013)

    Article  Google Scholar 

  26. Wang, R., Kawamura, Y.: A magnetic climbing robot for steel bridge inspection. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 3303–3308 (2014)

  27. Guo, J., Liu, W., Lee, K.M.: Design of flexonic mobile node using 3d compliant beam for smooth manipulation and structural obstacle avoidance. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5127–5132 (2014)

  28. Kamdar, S.: Design and manufacturing of a mecanum sheel for the magnetic climbing robot. Master Thesis, Embry-Riddle Aeronautical University (2015)

  29. Ward, P., Manamperi, P., Brooks, P.R., Mann, P., Kaluarachchi, W., Matkovic, L., Paul, G., Yang, C.H., Quin, P., Pagano, D., Liu, D., Waldron, K., Dissanayake, G.: Climbing robot for steel bridge inspection: Design challenges. In: Austroads Publications Online, ARRB Group (2015)

  30. Pham, N.H., La, H.M.: Design and implementation of an autonomous robot for steel bridge inspection. In: 54th Allerton Conf. on Comm., Con., and Comp., pp. 556–562 (2016)

  31. Wang, R., Kawamura, Y.: Development of climbing robot for steel bridge inspection. Indust. Robot: Int. J. 43(4), 429–447 (2016)

    Article  Google Scholar 

  32. Pham, N.H., La, H.M., Ha, Q.P., Dang, S.N., Vo, A.H., Dinh, Q.H.: Visual and 3d mapping for steel bridge inspection using a climbing robot. In: The 33rd Intern. Symposium on Automation and Robotics in Construction and Mining (ISARC), pp. 1–8 (2016)

  33. Takada, Y., Ito, S., Imajo, N.: Development of a bridge inspection robot capable of traveling on splicing parts. Inventions 2 (2017)

  34. Versatrax: Versatrax 150TM. http://inuktun.com/en/products/ (2019)

  35. Sato, G., Mae, Y., Kojima, M., Arai, T.: Transfer motion on planar structure of limb-mechanism robot in anti-gravity environment. In: Proceedings of 2018 ISFA International Symposium on Flexible Automation, pp. 467–472 (2018)

  36. Van Nguyen, L., Gibb, S., Pham, H.X., La, H.M.: A mobile robot for automated civil infrastructure inspection and evaluation. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6 (2018)

  37. La, H.M., Gucunski, N., Dana, K., Kee, S.-H.: Development of an autonomous bridge deck inspection robotic system. J. Field Robot. 34(8), 1489–1504 (2017)

    Article  Google Scholar 

  38. Gibb, S., Le, T., La, H.M., Schmid, R., Berendsen, T.: A multi-functional inspection robot for civil infrastructure evaluation and maintenance. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2672–2677 (2017)

  39. Le, T., Gibb, S., Pham, N., La, H.M., Falk, L., Berendsen, T.: Autonomous robotic system using non-destructive evaluation methods for bridge deck inspection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3672–3677 (2017)

  40. La, H.M., Lim, R.S., Basily, B.B., Gucunski, N., Yi, J., Maher, A., Romero, F.A., Parvardeh, H.: Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation. IEEE/ASME Trans. Mechatronics 18(6), 1655–1664 (2013)

    Article  Google Scholar 

  41. La, H.M., Gucunski, N., Kee, S.-H., Nguyen, L.V.: Data analysis and visualization for the bridge deck inspection and evaluation robotic system. Vis. Eng. 3(1), 1–16 (2015)

    Article  Google Scholar 

  42. La, H.M., Gucunski, N., Kee, S.H., Nguyen, L.V.: Visual and acoustic data analysis for the bridge deck inspection robotic system. In: The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC), pp. 50–57 (2014)

  43. Lim, R.S., La, H.M., Shan, Z., Sheng, W.: Developing a crack inspection robot for bridge maintenance. In: 2011 IEEE Intern. Conf. on Robotics and Automation (ICRA), pp. 6288–6293 (2011)

  44. Lim, R.S., La, H.M., Sheng, W.: A robotic crack inspection and mapping system for bridge deck maintenance. IEEE Trans. Autom. Sci. Eng. 11(2), 367–378 (2014)

    Article  Google Scholar 

  45. Gibb, S., La, H.M., Le, T., Nguyen, L., Schmid, R., Pham, H.: Nondestructive evaluation sensor fusion with autonomous robotic system for civil infrastructure inspection. J. Field Robot. 0(0) (2018)

  46. Sutter, B., Lelevé, A., Pham, M.T., Gouin, O., Jupille, N., Kuhn, M., Lulé, P., Michaud, P., Rémy, P.: A semi-autonomous mobile robot for bridge inspection. Autom. Constr. 91, 111–119 (2018)

    Article  Google Scholar 

  47. La, H.M., Gucunski, N., Kee, S.-H., Yi, J., Senlet, T., Nguyen, L.: Autonomous robotic system for bridge deck data collection and analysis. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1950–1955 (2014)

  48. Gillins, D.T., Parrish, C., Gillins, M.N., Simpson, C.: Eyes in the sky: Bridge inspections with unmanned aerial vehicles. https://www.oregon.gov/ODOT/Programs/ResearchDocuments/SPR787_Eyes_in_the_Sky.pdf (2018)

  49. Eschmann, C.W., Kuo, C.-M., Kuo, C., Boller, C.: Unmanned aircraft systems for remote building inspection and monitoring. In: The 6th European Workshop on Structural Health Monitoring (2012)

  50. Hallermann, N., Morgenthal, G.: Visual inspection strategies for large bridges using unmanned aerial vehicles (uav). In: Bridge maintenance, safety, management and life extension, pp. 661–667 (2014)

  51. Zink, J., Lovelace, B.: Unmanned aerial vehicle bridge inspection demonstration project final report. http://www.dot.state.mn.us/research/TS/2015/201540.pdf (2015)

  52. Dorafshan, S., Maguire, M.J.: Bridge inspection: human performance, unmanned aerial systems and automation. Civil Struct Health Monit (2018) (2018)

  53. Intel-Drone. Intel Flies Drones for Bridge Inspection, December 07, 2018. Available at https://www.engineering.com/BIM/ArticleID/18113/Intel-Flies-Drones-for-Bridge-Inspection.aspx (2018)

  54. K&J Magnetics, I.: Original magnet calculator. https://www.kjmagnetics.com/ (2019)

Download references

Acknowledgements

This work is supported by the U.S. National Science Foundation (NSF) under grants NSF-CAREER: 1846513 and NSF-PFI-TT: 1919127, and the U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology (USDOT/OST-R) under Grant No. 69A3551747126 through INSPIRE University Transportation Center, and the Vingroup Innovation Foundation (VINIF) in project code VINIF.2020.NCUD.DA094. The views, opinions, findings and conclusions reflected in this publication are solely those of the authors and do not represent the official policy or position of the NSF, the USDOT/OST-R and any other entities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Manh La.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.T., La, H.M. A Climbing Robot for Steel Bridge Inspection. J Intell Robot Syst 102, 75 (2021). https://doi.org/10.1007/s10846-020-01266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01266-1

Keywords

Navigation