Skip to main content

Advertisement

Log in

Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint

  • Review Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

Aluminum alloys (AAs) of 5xxx and 6xxx are employed in marine construction and shipbuilding, particularly in the construction of hulls, superstructures, and deck panels of ships due to their high strength-to-weight ratios and corrosion resistance characteristics. Fabrication of these structures often poses serious threats during the joining (welding) as these alloys exhibit a vast difference in chemical and mechanical properties. Moreover, corrosion of these alloys in marine atmosphere is also a serious issue. The objective of this paper is to present a review on the use of potential AAs for marine applications. Furthermore, serious challenges faced during the fabrication of these alloys are also highlighted in this article. Thus, this article will be of great help to researchers and academicians in finding answers to the problems faced during marine vehicle fabrication. The important characteristics, application, and problems faced while fabricating these alloys are collectively addressed in the present manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.A. Starke, Jr., H.M.M.A. Rashed, Alloys: aluminum. Ref. Modul. Mater. Sci. Mater. Eng. 18–24 (2016) https://doi.org/10.1016/b978-0-12-803581-8.09210-9

  2. R.A. Sielski, Research needs in aluminum structure. Ships Offshore Struct. 3(1), 57–65 (2008). https://doi.org/10.1080/17445300701797111

    Article  Google Scholar 

  3. T. Lamb, N. Beavers, T. Ingram, A. Schmieman, The benefits and cost impact of aluminum naval ship structure. J. Ship Prod. Des. 27(1), 35–49 (2011)

    Google Scholar 

  4. C.J. Altenburg, R.J. Scott, Design Considerations For Aluminum Hull Structures—Study Of Aluminum Bulk Carrier (GIBBS AND COX INC, New York, 1971)

    Google Scholar 

  5. B. Ertug, L.C. Kumruoglu, 5083 type Al–Mg and 6082 type Al–Mg–Si alloys for ship building. Am J. Eng. Res. 4(3), 146–150 (2015)

    Google Scholar 

  6. W.B. WanNik, O. Sulaiman, A. Fadhli, R. Rosliza, Corrosion behavior of aluminum alloy in seawater. in Proceedings of MARTEC 2010 International Conference on Marine Technology, BUET Dhaka, 2010, 175–180

  7. Selection and application. Washington, D.C.: The Aluminum Association, Inc. (1998). http://www.calm-aluminium.com.au/documents/aluminium-alloys.pdf. Accessed 8 Aug 2017

  8. G. Kaufman, ASM Handbook vol 13(b), Corrosion: Materials, in Materials Park, ed. by S.D. Cramer, B.S. Covino (ASM International, OH, 2009), pp. 95–124

    Google Scholar 

  9. C. Ozes, N. Neser, Experimental study on steel to FRP bonded lap joints in marine applications. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/164208

    Article  Google Scholar 

  10. X. Cao, P. Wanjara, J. Huang, C. Munro, A. Nolting, Hybrid fiber laser—Arc welding of thick section high strength low alloy steel. Mater. Des. 32, 3399–3413 (2011). https://doi.org/10.1016/j.matdes.2011.02.002

    Article  Google Scholar 

  11. C.H. Holtyn, The age of ships. Trans. Soc. Naval Arch. Mar. Eng. 74, 356–391 (1966)

    Google Scholar 

  12. S. Ferraris, S.L. Volpone, Aluminum Alloys in Third Millennium Shipbuilding: Materials, Technologies (Japan, Perspectives. The Fifth International Forum On Aluminum Ships, 2005), pp. 19–29

    Google Scholar 

  13. G. Allan, Applications for aluminum alloys in the marine industry a current perspective. in Proceedings of Alumitech 97, Atlanta, 1997, 292

  14. C.H. Holtyn, G.S. Gresham, J. Snodgrass, R.A. Hay, P. Hawner, The Construction and Service Record of a 306 Ft (Trans. Soc. Naval Arch. Mar. Eng., Aluminum Trailership, 1972)

    Google Scholar 

  15. G. Çam, G. İpekoğlu, Recent developments in joining of aluminum alloys. Int. J. Adv. Manuf. Technol. 91(5–8), 1851–1866 (2017). https://doi.org/10.1007/s00170-016-9861-0

    Article  Google Scholar 

  16. B. Çevik, B. Gülenç, The effect of welding speed on mechanical and microstructural properties of 5754 Al (AlMg3) alloy joined by laser welding. Mater. Res. Express 5(8), 086520 (2018)

    Article  Google Scholar 

  17. B. Çevik, Gas tungsten arc welding of 7075 aluminum alloy: microstructure properties, impact strength, and weld defects. Mater. Res. Express 5(6), 066540 (2018). https://doi.org/10.1088/2053-1591/aacbbc

    Article  Google Scholar 

  18. M.A. Wahid, Z.A. Khan, A.N. Siddiquee, T. Majeed, N. Sharma, Friction stir welding of AA-5754 in water and air: a comparative study. Mater. Res. Express 6(1), 01654 (2018). https://doi.org/10.1088/2053-1591/aae6fd

    Article  Google Scholar 

  19. M. Pakdil, G. Çam, M. Koçak, S. Erim, Microstructural and mechanical characterization of laser beam welded AA6056 Al–alloy. Mater. Sci. Eng. A 528(24), 7350–7356 (2011). https://doi.org/10.1016/j.msea.2011.06.010

    Article  Google Scholar 

  20. B. Çevik, Y. Özçatalbaş, B. Gülenç, Friction stir welding of 7075-T651 aluminum alloy. Pract. Metallogr. 53(1), 6–23 (2016)

    Article  Google Scholar 

  21. B. Çevik, Y. Özçatalbaş, B. Gülenç, Effect of welding speed on the mechanical properties and weld defects of 7075 Al alloy joined by FSW. Kovove Mater.-Met. Mater. 54(4), 241–247 (2016)

    Google Scholar 

  22. P. Goel, M.A. Wahid, N. Sharma, Z.A. Khan, A.N. Siddiquee, Effects of welding parameters in friction stir welding of stainless steel and aluminum. in Advances in Industrial And Production Engineering, 2019, 815–823

  23. L.Y. Wei, T.W. Nelson, Correlation of microstructures and process variables in FSW of HSLA-65steel. Weld. J. 90, 95–101 (2011)

    Google Scholar 

  24. M.A. Wahid, Z.A. Khan, A.N. Siddiquee, Review on underwater friction stir welding: a variant of friction stir welding with great potential of improving joint properties. Trans. Nonferrous Met. Soc. 28(2), 193–219 (2018)

    Article  Google Scholar 

  25. M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, M. Harooni, R. Kovacevic, Welding of aluminum alloys to steels: an overview. J. Manuf. Sci. Prod. 14(2), 59–76 (2014). https://doi.org/10.1515/jmsp-2014-0007

    Article  Google Scholar 

  26. B. Radulovic, B. Perovic, M. Misovic, Metalic Materials I. University of Montenegro, 2001, 90

  27. E. Mohanji, M. Popovic, Problems and prospect of Al–Mg alloys application in marine constructions. J. Metall. 12, 297–307 (2006)

    Google Scholar 

  28. Siegrist M. Aluminum extrusions for shipbuilding. in Proceedings of Alumitech, Atlanta, 1997, 267

  29. F.J. Hernandez, J.J. Santana, R. Souto, S. Gonzalez, J. Morales, Characterization of the atmospheric corrosion of aluminum in archipelagic subtropical environments. Int. J. Electrochem. Sci. 6, 6567–6580 (2011)

    Google Scholar 

  30. B.D. Danilenko, Workability of aluminum alloys. Russ. Eng. Res. 31(8), 797–799 (2011). https://doi.org/10.3103/S1068798X11080077

    Article  Google Scholar 

  31. B. Ramesh, Workability analysis on aluminium based composites and aluminium alloys. Ph.D. thesis, Pondicherry Engineering College, Pondicherry University, Puducherry, India, 2011

  32. E. Turan, T. Kocal, K. Unlugencoglu, Welding technologies in shipbuilding industry. Online J. Sci. Technol. 1(4), 24–30 (2011)

    Google Scholar 

  33. N.Z. Khan, Z.A. Khan, A.N. Siddiquee, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength of friction stir welded 6063 aluminium alloy. Mater. Today Proc. 4–5, 1450–1457 (2015). https://doi.org/10.1016/j.matpr.2015.07.068

    Article  Google Scholar 

  34. N.Z. Khan, Z.A. Khan, A.N. Siddiquee, S.K. Sihab, Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J. Alloys Compd. 648, 360–367 (2015). https://doi.org/10.1016/j.jallcom.2015.06.246

    Article  Google Scholar 

  35. W. Fricke, H. Remes, O. Feltz, I. Lillemae, D. Tchuindjang, T. Reinert, A. Nevierov, W. Sichermann, M. Brinkmann, T. Kontkanen, B. Bohlmann, L. Molter, Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach. Ships Offshore Struct. 10(1), 39–44 (2013). https://doi.org/10.1080/17445302.2013.850208

    Article  Google Scholar 

  36. N. Ma, L. Li, H. Huang, S. Chang, H. Murakawa, Residual stresses in laser-arc hybrid welded butt-joint with different energy ratios. J. Mater. Process. Technol. 30(220), 36–45 (2015). https://doi.org/10.1016/j.jmatprotec.2014.09.024

    Article  Google Scholar 

  37. B. Ribic, T. Palmer, T. DebRoy, Problems and issues in laser-arc hybrid welding. Int. Mater. Rev. 54(4), 223–244 (2009). https://doi.org/10.1179/174328009X411163

    Article  Google Scholar 

  38. S. Das, H. Hayden, G. Berthold, Development of non-heat-treatable automotive aluminium sheet alloys. Mater. Sci. Forum 331–337, 913–920 (2000)

    Article  Google Scholar 

  39. M. Skillingberg, Making aluminum alloy selection easier. Mar. Log, 2004

  40. G.M. Raynaud, P. Gomiero, The potential of 5383 alloy in marine application. in Proceedings of Alumitech, Atlanta 1997, 353

  41. K. Dudzik, Mechanical properties of 5083, 5059 and 7020 aluminium alloys and their joints welded by MIG. J. KONES 18(3), 73–77 (2011). https://doi.org/10.5604/12314005.1136263

    Article  Google Scholar 

  42. M. Grujicic, G. Arakere, C. Yen, B. Cheeseman, Computational investigation of hardness evolution during friction-stir welding of AA5083 and AA2139 aluminum alloys. J Mater. Eng. Perform. 20(7), 1097–1108 (2010). https://doi.org/10.1007/s11665-010-9741-y

    Article  Google Scholar 

  43. K.P. Galanis, Fracture of aluminum naval structures. Ph.D. thesis, Massachusetts Institute of Technology, USA, 2007

  44. M. Skillingberg, Aluminum at sea speed, endurance and affordability, Mar. Log 27–32 (2007)

  45. Aluminium alloys for hull construction and marine structure, IACS Soc. Ships, Rev. (2014)

  46. Rules for materials and welding part 2, (American Bureau of Shipping, USA, 2014) (updt.)

  47. S.G. Epstein, J.G. Kaufman, P. Pollok, Aluminum and Its Alloys (The Aluminum Association Inc, Washington D.C, 1994)

    Google Scholar 

  48. A. Duran, R. Dif, in New Alloy Development at Pechiney: A New Generation of 5383. ed. by P.A. Wilson, G.E. Hearn (Conference Proceedings, FAST Southampton, 2001), pp. 223–230

  49. R. Behnagh, G.M. Besharati, M. Akbari, Mechanical properties, Corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates. Mater. Manuf. Process. 27(6), 636–640 (2012). https://doi.org/10.1080/10426914.2011.593243

    Article  Google Scholar 

  50. M.H. Larsen, J.C. Walmsley, O. Lunder, R.H. Mathiesen, K. Nisancioglu, Intergranular corrosion of copper containing AA6xxx AlMgSi aluminum alloys. J. Electrochem. Soc. 155(11), 550–556 (2008). https://doi.org/10.1149/1.2976774

    Article  Google Scholar 

  51. M. Lim, R. Kelly, J. Scully, Overview of intergranular corrosion mechanisms, phenomenological observations, and modeling of AA5083. Corrosion 72(2), 198–220 (2016). https://doi.org/10.5006/1818

    Article  Google Scholar 

  52. C.B. Crane, R.G. Kelly, R.P. Gangloff, Crack chemistry control of intergranular stress corrosion cracking in sensitized Al-Mg. Corrosion 72(2), 242–263 (2015). https://doi.org/10.5006/1852

    Article  Google Scholar 

  53. J. Seong, G.S. Frankel, N. Sridhar, Inhibition of stress corrosion cracking of sensitized AA5083. Corrosion 72(2), 284–296 (2016). https://doi.org/10.5006/1798

    Article  Google Scholar 

  54. R. Chen, C. Lai, Reversing sensitization of naturally exfoliated 5456-H116 aluminum alloys. J. Mar. Sci. Technol. 22(4), 450–454 (2014). https://doi.org/10.6119/JMST-013-0521-4

    Article  Google Scholar 

  55. J.R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM Int., USA, 1999)

    Google Scholar 

  56. E. Ghali, in Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance and Testing. Wiley Publication; 2010. https://doi.org/10.1002/9780470531778

  57. R.S. Rana, R. Purohit, S. Das, Microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. Int. J. Sci. Res. Publ. 2(6), 2250–3153 (2012)

    Google Scholar 

  58. P. Praveen, P.K.D.V. Yarlagadda, Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding. J. Mater. Process. Technol. 164–165, 1106–1112 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.224

    Article  Google Scholar 

  59. B. Acherjee, Hybrid laser arc welding: state-of-art review. Opt. Laser Technol. 99, 66–71 (2018). https://doi.org/10.1016/j.optlastec.2017.09.038

    Article  Google Scholar 

  60. X. Jin, G. Song, W. Zheng, Laser-arc hybrid welding properties of aluminum alloy 6005a. Appl. Mech. Mater. 651–653, 50–55 (2014). https://doi.org/10.4028/www.scientific.net/AMM.651-653.50

    Article  Google Scholar 

  61. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, International Patent Application PCT/GB92/02203 and GB Patent Application 9125978.8, UK Patent Office, London, December 6, 1991

  62. A. Iqbal, N.Z. Khan, A.N. Siddiquee, Friction stir welding of different joint configurations: a review. J. Mater. Sci. Mech. Eng. 2(14), 19–24 (2015)

    Google Scholar 

  63. A. Bugarin, F. Queiroz, M. Terada, Melo H. De, I. Costa, Localized corrosion resistance of dissimilar aluminum alloys joined by friction stir welding (FSW). Key Eng. Mater. 710, 41–46 (2016). https://doi.org/10.4028/www.scientific.net/KEM.710.41

    Article  Google Scholar 

  64. M.A. Wahid, A.N. Siddiquee, Z.A. Khan, N. Sharma, Analysis of cooling media effects on microstructure and mechanical properties during FSW/UFSW of AA 6082-T6. Mater. Res. Express 5(4), 046512 (2018). https://doi.org/10.1088/2053-1591/aab8e3

    Article  Google Scholar 

  65. M.A. Wahid, A.N. Siddiquee, Z.A. Khan, M. Asjad, Friction stir welds of al alloy–cu: an investigation on effect of plunge depth. Arch. Mech. Eng. 63(4), 619–634 (2016). https://doi.org/10.1515/meceng-2016-0035

    Article  Google Scholar 

  66. S. Singh, Z.A. Khan, A.N. Siddiquee, Study on the effect of FSW process parameters on joint quality of dissimilar materials. Int. J. Res. Eng. Adv. Technol. 3(2), 282–298 (2015)

    Google Scholar 

  67. A.N. Siddiquee, S. Pandey, N.Z. Khan, Friction stir welding of austenitic stainless steel: a study on microstructure and effect of parameters on tensile strength. Mater. Today: Proc. 2(4–5), 1388–1397 (2015). https://doi.org/10.1016/j.matpr.2015.07.058

    Article  Google Scholar 

  68. A.N. Siddiquee, S. Pandey, Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. Int. J. Adv. Manuf. Technol. 73(1), 479–486 (2014). https://doi.org/10.1007/s00170-014-5846-z

    Article  Google Scholar 

  69. T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, G. Çam, Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. J. Mater. Eng. Perform. 25(1), 320–326 (2016). https://doi.org/10.1007/s11665-015-1838-x

    Article  Google Scholar 

  70. J. Zhao, F. Jiang, H. Jian, K. Wen, L. Jiang, X. Chen, Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al–Mg–Sc alloy plates. Mater. Des. 31(1), 306–311 (2010). https://doi.org/10.1016/J.MATDES.2009.06.012

    Article  Google Scholar 

  71. V.B. Sivakumar, D. Raguraman, D. Muruganandam, Review paper on friction stir welding of various aluminium alloys: national conference on contemporary approaches in mechanical, automobile and building sciences, Karpaga Vinayaga College of Engineering & Technology, 46–52 (2016)

  72. G. İpekoğlu, G. Çam, Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metall. Mater. Trans. A 45A(7), 3074–3087 (2014). https://doi.org/10.1007/s11661-014-2248-7

    Article  Google Scholar 

  73. Y. Bozkurt, S. Salman, G. Çam, Effect of welding parameters on lap-shear tensile properties of dissimilar friction stir spot welded AA5754-H22/2024-T3 joints. J. Sci. Technol. Weld. Join. 18(4), 337–345 (2013). https://doi.org/10.1179/1362171813Y.0000000111

    Article  Google Scholar 

  74. M.K. Besharati, G.P. Asadi, Advances in Friction-Stir Welding and Processing (Woodhead Publishing, UK, 2014)

    Google Scholar 

  75. M.A. Wahid, et al. A simulation-based study on the effect of underwater friction stir welding process parameters using different evolutionary optimization algorithms. J. Mech. Eng. Sci. SAGE (SCI) Institution of Mech Engg. Accessed Oct 2019

  76. M.A. Mofid, A. Abdollah-Zadeh, F.M. Ghaini, C.H. Gur, Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: an improved method to join Al alloys to Mg alloys. Metall. Mater. Trans. A 43(13), 5106–5114 (2012). https://doi.org/10.1007/s11661-012-1314-2

    Article  Google Scholar 

  77. S.S. Sabari, S. Malarvizhi, V. Balasubramanian, G.M. Reddy, The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy. Def. Technol. 12(4), 324–333 (2016). https://doi.org/10.1186/s40712-016-0058-y

    Article  Google Scholar 

  78. Q. Wang, Y. Zhao, K. Yan, S. Lu, Corrosion behavior of spray formed 7055 aluminum alloy joint welded by underwater friction stir welding. Mater. Des. 68, 97–103 (2015). https://doi.org/10.1016/j.matdes.2014.12.019

    Article  Google Scholar 

  79. G. Çam, G. İpekoğlu, H.T. Serindağ, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Sci. Technol. Weld. Join. 19(8), 715–720 (2014). https://doi.org/10.1179/1362171814Y.0000000247

    Article  Google Scholar 

  80. M.A. Wahid, Z.A. Khan, A.N. Siddiquee, N. Sharma, R. Shandley, Analysis of process parameters effects on underwater friction stir welding of AA 6082-T6. J. Eng. Manuf. 233(6), 1700–1710 (2019)

    Article  Google Scholar 

  81. H.J. Zhang, H.J. Liu, L. Yu, Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Mater. Des. 32(8–9), 4402–4407 (2011). https://doi.org/10.1016/J.MATDES.2011.03.073

    Article  Google Scholar 

  82. S.S. Sabari, S. Malarvizhi, V. Balasubramanian, G.M. Reddy, The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy. Int. J. Mech. Mater. Eng. 11(1), 1–14 (2016). https://doi.org/10.1186/s40712-016-0058-y

    Article  Google Scholar 

  83. J. Zhang, Y. Shen, X. Yao, H. Xu, B. Li, Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper. Mater. Des. 64, 74–80 (2014). https://doi.org/10.1016/J.MATDES.2014.07.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Atif Wahid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahid, M.A., Siddiquee, A.N. & Khan, Z.A. Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint. Mar Syst Ocean Technol 15, 70–80 (2020). https://doi.org/10.1007/s40868-019-00069-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-019-00069-w

Keywords

Navigation