Skip to main content
Log in

High temperature effects on the properties of limestones: post-fire diagnostics and material’s durability

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The research aims at investigating the temperature dependency of important properties of construction limestones, in the temperature range that could be reached during fires (200–800 °C). Limestones, through their different species and geographical origins, show a great variability in basic properties. The presented data will be useful to the post-fire recovery design of stonework buildings, by supporting the judgement on the perspects of durability based on the post-fire state of stones. The research features six varieties of construction limestones from different zones of France. The tests—colorimetry, ultrasonic P-wave velocity, total porosity, mercury intrusion porosimetry (MIP), scanning electron microscope (SEM) observations, capillary water absorption—are performed after high temperature exposure in a controlled furnace oven. The samples and heating conditions are designed to attain a uniform maximum temperature inside the samples. Nondestructive investigation techniques have a great potential usefulness in the perspect of post-fire investigations; on the other hand, the changes in the porous network, porosity and capillarity—investigated in laboratory—are direct indicators of post-fire materials’ decay. The individuated temperature-property relationships of the single stone species, as well as correlations between P-wave velocity to porosity and compressive strength, are generally reliable. Finally, the detrimental effect of post-cooling rehydration has been observed through the kinetics of deterioration for all the investigated varieties of limestone. The results demonstrate the need of integrating non-destructive techniques to laboratory tests for cost-effective diagnostics on fire-damaged stonework buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tandon A (ed) (2018) First Aid to cultural heritage in times of crisis—1. ICCROM, Rome

    Google Scholar 

  2. Pereira D (2019) Natural stone and World Heritage: Salamanca. CRC Press/Balkema, Leiden

    Book  Google Scholar 

  3. Kaur G, Singh SN, Ahuja A, Singh ND (2020) Natural stone and World Heritage: Delhi-Agra (India). CRC Press/Balkema, Leiden

    Book  Google Scholar 

  4. Davis M (2021) Fire-ravaged Royal Clarence Hotel site derelict five years on. https://www.bbc.com/news/uk-england-devon-59062937. Accessed 23 Feb 2022

  5. Kincaid S (2020) After the fire: reconstruction following destructive fires in historic buildings. Hist Environ Policy Pract 11(1):21–39

    Article  Google Scholar 

  6. Smith J, Gomez-Heras M, Viles HA, Cassar J (2010) Limestone in the built environment: present-day challenges for the preservation of the past. Geol Soc Spec Publ 331:1

  7. Cassar J, Winter MG, Marker BR et al (2014) Introduction to stone in historic buildings: characterization and performance. Geol Soc Spec Publ 391:1–5

  8. Sippel J, Siegesmund S, Weiss T et al (2007) Decay of natural stones caused by fire damage. Geol Soc Spec Publ 271:139–151

    Article  Google Scholar 

  9. Robert F, Colina H (2008) The influence of aggregates on the mechanical characteristics of concrete exposed to fire. Mag Concr Res 61:311–321

    Article  Google Scholar 

  10. Sciarretta F, Eslami J, Beaucour AL, Noumowé A (2021) State-of-the-art of construction stones for masonry exposed to high temperatures. Constr Build Mater 304:124536

    Article  Google Scholar 

  11. Praticò Y, Ochsendorf J, Holzer S, Flatt RJ (2020) Post-fire restoration of historic buildings and implications for Notre-Dame de Paris. Nat Mater 19:817–820

    Article  Google Scholar 

  12. Concu G, De Nicolo B, Valdes M (2014) Prediction of building limestone physical and mechanical properties by means of ultrasonic P-Wave velocity. Sci World J 2014:508073

    Article  Google Scholar 

  13. Ince I, Bozdağ A, Tosunlar MB et al (2018) Determination of deterioration of the main facade of the Ferit Paşa cistern by non-destructive techniques (Konya, Turkey). Environ Earth Sci 77:420

    Article  Google Scholar 

  14. Beck K, Janvier-Badosa S, Brunetaud X et al (2016) Non-destructive diagnosis by colorimetry of building stone subjected to high temperatures. Eur J Environ Civ Eng 20(6):643–655

    Article  Google Scholar 

  15. EN (2013) Natural stone test methods. Determination of resistance to ageing by thermal shock, EN 14066:2013

  16. Franzoni E, Sassoni E, Scherer GW, Naidu S (2013) Artificial weathering of stone by heating. J Cult Herit 14S:e85–e93

    Article  Google Scholar 

  17. RILEM TC 129-MHT (1995) Test methods for mechanical properties of concrete at high temperatures—compressive strength for service and accident conditions. Mater Struct 28:410–414

    Article  Google Scholar 

  18. Vigroux M, Eslami J, Beaucour AL et al (2021) High temperature behaviour of various natural building stones. Constr Build Mater 272:121629

    Article  Google Scholar 

  19. Luque A, Ruiz-Agudo E, Cultrone G et al (2011) Direct observation of microcrack development in marble caused by thermal weathering. Environ Earth Sci 62:1375–1386

    Article  Google Scholar 

  20. Koca MY, Ozden G, Yavuz AB et al (2006) Changes in the engineering properties of marble in fire-exposed columns. Int J Rock Mech Min Sci 43:520–530

    Article  Google Scholar 

  21. Pires V, Rosa LG, Dionisio A (2014) Implications of exposure to high temperatures for stone cladding requirements of three Portuguese granites regarding the use of dowel–hole anchoring systems. Constr Build Mater 64:440–450

    Article  Google Scholar 

  22. NF EN 1936 (2007) Méthodes d'essai des pierres naturelles—Détermination des masses volumiques réelle et apparente et des porosités ouvertes et totale

  23. Çelik MY, Kaçmaz AU (2016) The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environ Earth Sci 75:307

    Article  Google Scholar 

  24. Tomašić I, Lukić D, Peček N, Kršinić A (2011) Dynamics of capillary water absorption in natural stone. Bull Eng Geol Environ 70:673–680

    Article  Google Scholar 

  25. Benavente S, Such-Basañez I, Fernandez-Cortes A et al (2021) Comparative analysis of water condensate porosity using mercury intrusion porosimetry and nitrogen and water adsorption techniques in porous building stones. Constr Build Mater 288:123131

    Article  Google Scholar 

  26. Cnudde V, Cwirzen A, Masschaele B, Jacobs PJS (2009) Porosity and microstructure characterization of building stones and concretes. Eng Geol 103:76–83

    Article  Google Scholar 

  27. Alessandri C, Mallardo V (2012) Structural assessments of the Church of the Nativity in Bethlehem. J Cult Herit 13:e61–e69

    Article  Google Scholar 

  28. Bosiljkov V, Uranjek M, Žarnić R, Bokan-Bosiljkov V (2010) An integrated diagnostic approach for the assessment of historic masonry structures. J Cult Herit 11:239–249

    Article  Google Scholar 

  29. Carpinteri A, Lacidogna G, Invernizzi S et al (2009) Stability of the vertical bearing structures of the Syracuse cathedral: experimental and numerical evaluation. Mater Struct 42:877–888

    Article  Google Scholar 

  30. De Kock T, Dewanckele J, Boone M et al (2014) Replacement stones for Lede stone in Belgian historical monuments. Geol Soc Spec Publ 391:31–46

    Article  Google Scholar 

  31. Lopez-Arce P, Tagnit-Hammou M, Menendez B et al (2016) Physico-chemical stone-mortar compatibility of commercial stone-repair mortars of historic buildings from Paris. Constr Build Mater 124:424–441

    Article  Google Scholar 

  32. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks: a symposium. American Association of Petroleum Geologists Memoir, pp 108–121

    Google Scholar 

  33. Beck K (2006) Etude des propriétés hydriques et des mécanismes d’altération des pierres calcaires à forte porosité. PhD Dissertation, Université d’Orléans [in French]

  34. Sciarretta F, Fava S, Francini M et al (2021) Ultra-high performance concrete (UHPC) with polypropylene (Pp) and steel Fibres: investigation on the high temperature behaviour. Constr Build Mater 304:124608

    Article  Google Scholar 

  35. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  36. Darley JJ, Lott JNA (1973) Low temperature freeze-drying for the scanning electron microscope using liquid nitrogen at low vacuum. Micron 4:178–182

    Google Scholar 

  37. Di Remigio G, Rocchi I, Zania V (2021) Scanning Electron Microscopy and clay geomaterials: from sample preparation to fabric orientation quantification. Appl Clay Sci 214:106249

    Article  Google Scholar 

  38. Rahmouni A, Rhaffari YEL, Boulanouar A et al (2017) Effect of porosity and water saturation on the mechanical properties and P-wave velocity of calcarenite rocks used in the construction of historical monuments in Rabat, Morocco. In: Proceedings of 13ème Congrès de Mécanique, Meknès, Morocco

  39. Razafinjato RN, Beaucour AL, Hébert R et al (2013) Thermal stability of different siliceous and calcareous aggregates subjected to high temperature. In: MATEC web of conferences, vol 6, pp 1–9

  40. Walbert C, Eslami J, Beaucour AL et al (2015) Evolution of the mechanical behaviour of limestone subjected to freeze-thaw cycles. Environ Earth Sci 74:6339–6351

    Article  Google Scholar 

  41. Remy JM (1993) Influence de la structure du milieu poreux carbonaté sur les transferts d’eau et les changements de phase eau-glace: application à la durabilité au gel de roches calcaires de Lorraine. PhD Thesis, Institut National Polytechnique de Lorraine (French)

  42. McCabe S, Smith BJ, Warke PA (2010) Exploitation of inherited weakness in fire-damaged building sandstone: the ‘fatiguing’ of ‘shocked’ stone. Eng Geol 115:217–225

    Article  Google Scholar 

  43. Eslami J, Walbert C, Beaucour AL et al (2018) Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles. Constr Build Mater 162:420–429

    Article  Google Scholar 

  44. Benavente D (2011) Why pore size is important in the deterioration of porous stones used in the built heritage. Rev Soc Esp Miner 15:41–42

    Google Scholar 

  45. Siegesmund S, Snethlage R (eds) (2011) Stone in architecture. Springer, Berlin

    Google Scholar 

  46. Hajpál M, Török A (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46:311–322

    Article  Google Scholar 

  47. Lawrence RMH, Mays TJ, Walker P, D’Ayala D (2006) Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim Acta 444:179–189

    Article  Google Scholar 

Download references

Funding

This research was supported by the “Fondation des Sciences du Patrimoine (ANR-10-LABX-0094-01)”. The authors express their gratitude to this organization, and to Rocamat for providing the stone samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Sciarretta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigroux, M., Sciarretta, F., Eslami, J. et al. High temperature effects on the properties of limestones: post-fire diagnostics and material’s durability. Mater Struct 55, 253 (2022). https://doi.org/10.1617/s11527-022-02086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02086-5

Keywords

Navigation