Skip to main content
Log in

A concrete damage–plasticity model for FRP confined columns

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Proper design of fibre reinforced polymer (FRP) retrofitted concrete columns requires an appropriate concrete model that describes both confinement sensitivity (i.e increase of the strength and ductility) and dilation characteristic of concrete under the triaxial stress state. In this paper, a confinement-sensitive damage plasticity model for concrete material is developed. The dilation behaviour is predicted using a non associated Cam-Clay type potential function. The application of the model is demonstrated in the case of actively and FRP confined (passive) concrete. It is found that essential mechanical features of the confined concrete can be reproduced for both actively and passively confined concrete in practical engineering uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ibell T, Darby A, Denton S (2009) Research issues related to the appropriate use of FRP in concrete structures. Constr Build Mater 23(4):1521–1528. doi:10.1016/j.conbuildmat.2008.05.011

    Article  Google Scholar 

  2. Mirmiran A, Shahaway M (1995) A novel FRP-concrete composite construction for the infrastructure. In: 13th structural congress, ASCE, Boston, MA, pp 1663–1666

  3. Mirmiran A, Shahawy M (1997) Behavior of concrete columns confined by fiber composites. J Struct Eng 123(5):583–590. doi:10.1061/(ASCE)0733-9445(1997)123:5(583)

    Article  Google Scholar 

  4. Saadatmanesh H, Ehsani M, Li M (1994) Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Struct J 91(4):434–447

    Google Scholar 

  5. Toutanji H, Saafi M (2002) Stress-strain behavior of concrete columns confined with hybrid composite materials. Mater Struct 35(6):338. doi:10.1007/BF02483153

    Article  Google Scholar 

  6. Berthet J, Ferrier E, Hamelin P (2006) Compressive behavior of concrete externally confined by composite jackets: part B: modeling. Constr Build Mater 20(5):338–347. doi:10.1016/j.conbuildmat.2005.01.029

    Article  Google Scholar 

  7. Lam L, Teng JG (2003) Design-oriented stress-strain model for FRP-confined concrete. Constr Build Mater 17(6–7):471–489. doi:10.1016/S0950-0618(03)00045-X

    Article  Google Scholar 

  8. Nanni A, Bradford NM (1995) FRP jacketed concrete under uniaxial compression. Constr Build Mater 9(2):115–124. doi:10.1016/0950-0618(95)00004-Y

    Article  Google Scholar 

  9. Samaan M, Mirmiran A, Shahawy M (1998) Model of concrete confined by fiber composites. J Struct Eng 124(9):1025–1031. doi:10.1061/(ASCE)0733-9445(1998)124:9(1025)

    Article  Google Scholar 

  10. Wu G, Wu Z, Lü Z (2007) Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr Build Mater 21(5):1107–1121. doi:10.1016/j.conbuildmat.2005.12.014

    Article  Google Scholar 

  11. Albanesi T, Nuti C, Vanzi I (2007) Closed form constitutive relationship for concrete filled frp tubes under compression. Constr Build Mater 21(2):409–427. doi:10.1016/j.conbuildmat.2005.08.004

    Article  Google Scholar 

  12. Fam AZ, Rizkalla SH (2001) Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes. Struct J 98(4):451–461

    Google Scholar 

  13. Jiang T, Teng JG (2007) Analysis-oriented stress–strain models for FRP-confined concrete. Eng Struct 29(11):2968–2986. doi:10.1016/j.engstruct.2007.01.010

    Article  Google Scholar 

  14. Spoelstra M, Monti G (1999) FRP-confined concrete model. J Compos Constr 3(3):143–150. doi:10.1061/(ASCE)1090-0268(1999)3:3(143)

    Article  Google Scholar 

  15. Teng J, Huang Y, Lam L, Ye L (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J Compos Constr 11(2):201–210. doi:10.1061/(ASCE)1090-0268(2007)11:2(201)

    Article  Google Scholar 

  16. Ozbakkaloglu T, Lim JC, Vincent T (2013) FRP-confined concrete in circular sections: review and assessment of stress-strain models. Eng Struct 49:1068–1088. doi:10.1016/j.engstruct.2012.06.010

    Article  Google Scholar 

  17. Grassl P (2004) Modelling of dilation of concrete and its effect in triaxial compression. Finite Elem Anal Des 40(9–10):1021–1033. doi:10.1016/j.finel.2003.04.002

    Article  Google Scholar 

  18. Jiang JF, Wu YF (2012) Identification of material parameters for Drucker–Prager plasticity model for FRP confined circular concrete columns. Int J Solids Struct 49(3–4):445–456. doi:10.1016/j.ijsolstr.2011.10.002

    Article  Google Scholar 

  19. Karabinis A, Rousakis T, Manolitsi G (2008) 3D finite-element analysis of substandard RC columns strengthened by fiber-reinforced polymer sheets. J Compos Constr 12(5):531–540. doi:10.1061/(ASCE)1090-0268(2008)12:5(531)

    Article  Google Scholar 

  20. Mirmiran A, Zagers K, Yuan W (2000) Nonlinear finite element modeling of concrete confined by fiber composites. Finite Elem Anal Des 35(1):79–96. doi:10.1016/S0168-874X(99)00056-6

    Article  MATH  Google Scholar 

  21. Rousakis TC, Karabinis AI, Kiousis PD, Tepfers R (2008) Analytical modelling of plastic behaviour of uniformly FRP confined concrete members. Compos B Eng 39(7–8):1104–1113. doi:10.1016/j.compositesb.2008.05.001

    Article  Google Scholar 

  22. Shahawy M, Mirmiran A, Beitelman T (2000) Tests and modeling of carbon-wrapped concrete columns. Compos B Eng 31(6–7):471–480. doi:10.1016/S1359-8368(00)00021-4

    Article  Google Scholar 

  23. Yu T, Teng JG, Wong YL, Dong SL (2010b) Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model. Eng Struct 32(3):665–679. doi:10.1016/j.engstruct.2009.11.014

    Article  Google Scholar 

  24. Youssf O, ElGawady MA, Mills JE, Ma X (2014) Finite element modelling and dilation of FRP-confined concrete columns. Eng Struct 79:70–85. doi:10.1016/j.engstruct.2014.07.045

    Article  Google Scholar 

  25. Yu T, Teng J, Wong Y, Dong S (2010a) Finite element modeling of confined concrete-II: plastic–damage model. Eng Struct 32(3):680–691. doi:10.1016/j.engstruct.2009.11.013

    Article  Google Scholar 

  26. Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic–damage model for concrete. Int J Solids Struct 25(3):299–326. doi:10.1016/0020-7683(89)90050-4

    Article  Google Scholar 

  27. Lee J, Fenves G (1998) Plastic–damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892)

    Article  Google Scholar 

  28. Teng J, Xiao Q, Yu T, Lam L (2015) Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement. Eng Struct 97:15–28

    Article  Google Scholar 

  29. Luccioni BM, Rougier VC (2005) A plastic damage approach for confined concrete. Comput Struct 83(27):2238–2256. doi:10.1016/j.compstruc.2005.03.014

    Article  Google Scholar 

  30. Yazdani S, Karnawat S (1992) A unified constitutive theory for brittle solids. Mech Res Commun 19(5):443–448. doi:10.1016/0093-6413(92)90024-5

    Article  MATH  Google Scholar 

  31. Yazdani S, Karnawat S (1996) A constitutive theory for brittle solid with application to concrete. Int J Damage Mech 5:93–110. doi:10.1177/105678959600500105

    Article  Google Scholar 

  32. Lim J, Ozbakkaloglu T (2014) Investigation of the influence of the application path of confining pressure: tests on actively confined and FRP-confined concretes. J Struct Eng 141(8):04014,203. doi:10.1061/(ASCE)ST.1943-541X.0001177

    Article  Google Scholar 

  33. Lim JC, Ozbakkaloglu T (2015b) Unified stress–strain model for frp and actively confined normal-strength and high-strength concrete. J Compos Constr 19(4):04014,072. doi:10.1061/(ASCE)CC.1943-5614.0000536

    Article  Google Scholar 

  34. Pietruszczak S, Jiang J, Mirza FA (1988) An elastoplastic constitutive model for concrete. Int J Solids Struct 24(7):705–722. doi:10.1016/0020-7683(88)90018-2

    Article  MATH  Google Scholar 

  35. Jia Y, Bian HB, Su K, Kondo D, Shao JF (2010) Elastoplastic damage modeling of desaturation and resaturation in argillites. Int J Numer Anal Methods Geomech 34(2):187–220. doi:10.1002/nag.819

    MATH  Google Scholar 

  36. Frantziskonis G, Desai CS (1987) Constitutive model with strain softening. Int J Solids Struct 23(6):733–750. doi:10.1016/0020-7683(87)90076-X

    Article  MATH  Google Scholar 

  37. Grassl P, Lundgren K, Gylltoft K (2002) Concrete in compression: a plasticity theory with a novel hardening law. Int J Solids Struct 39(20):5205–5223. doi:10.1016/S0020-7683(02)00408-0

    Article  MATH  Google Scholar 

  38. Papanikolaou VK, Kappos AJ (2007) Confinement-sensitive plasticity constitutive model for concrete in triaxial compression. Int J Solids Struct 44(21):7021–7048. doi:10.1016/j.ijsolstr.2007.03.022

    Article  MATH  Google Scholar 

  39. Etse G, Willam K (1994) Fracture energy formulation for inelastic behavior of plain concrete. J Eng Mech 120(9):1983–2011. doi:10.1061/(ASCE)0733-9399(1994)120:9(1983)

    Article  MATH  Google Scholar 

  40. Grassl P, Jirásek M (2006) Damage–plastic model for concrete failure. Int J Solids Struct 43(22–23):7166–7196. doi:10.1016/j.ijsolstr.2006.06.032

    Article  MATH  Google Scholar 

  41. Xie SY, Shao JF (2006) Elastoplastic deformation of a porous rock and water interaction. Int J Plast 22(12):2195–2225. doi:10.1016/j.ijplas.2006.03.002

    Article  MATH  Google Scholar 

  42. Jason L, Huerta A, Pijaudier-Cabot G, Ghavamian S (2006) An elastic plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic damage model. Comput Methods Appl Mech Eng 195(52):7077–7092. doi:10.1016/j.cma.2005.04.017

    Article  MATH  Google Scholar 

  43. Smith SS, Willam KJ, Gerstle KH, Sture S (1989) Concrete over the top, or: is there life after peak? ACI Mater J 86(5):491-497

    Google Scholar 

  44. Sfer D, Carol I, Gettu R, Etse G (2002) Study of the behavior of concrete under triaxial compression. J Eng Mech 128(2):156–163. doi:10.1061/(ASCE)0733-9399(2002)128:2(156)

    Article  Google Scholar 

  45. Shao J, Jia Y, Kondo D, Chiarelli A (2006) A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech Mater 38(3):218–232

    Article  Google Scholar 

  46. Imran I, Pantazopoulou SJ (1996) Experimental study of plain concrete under triaxial stress. ACI Mater J 93(6):589–601

    Google Scholar 

  47. Pantazopoulou SJ, Mills RH (1995) Microstructural aspects of the mechanical response of plain concrete. Mater J 92(6):605-616

    Google Scholar 

  48. Kratzig WB, Polling R (2004) An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Comput Struct 82(15–16):1201–1215. doi:10.1016/j.compstruc.2004.03.002

    Article  Google Scholar 

  49. Meschke G, Lackner R, Mang HA (1998) An anisotropic elastoplastic-damage model for plain concrete. Int J Numer Methods Eng 42(4):703–727. doi:10.1002/(SICI)1097-0207(19980630)42:4<703::AID-NME384>3.0.CO;2-B

    Article  MATH  Google Scholar 

  50. Desai CS, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modelling of geologic materials. Int J Numer Anal Methods Geomech 10(3):225–257. doi:10.1002/nag.1610100302

    Article  MATH  Google Scholar 

  51. Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25(5):729–737. doi:10.1016/0013-7944(86)90036-6

    Article  Google Scholar 

  52. Li H, Teng J, Li Z, Wang Y, Zou D (2015) Experimental study of damage evolution in cuboid stirrup-confined concrete. Mater Struct. doi:10.1617/s11527-015-0691-6

    Google Scholar 

  53. Poinard C, Malecot Y, Daudeville L (2010) Damage of concrete in a very high stress state: experimental investigation. Mater Struct 43(1–2):15–29. doi:10.1617/s11527-008-9467-6

    Article  Google Scholar 

  54. Mazars J, Berthaud Y, Ramtani S (1990) The unilateral behaviour of damaged concrete. Eng Fract Mech 35(4–5):629–635. doi:10.1016/0013-7944(90)90145-7

    Article  Google Scholar 

  55. Ortiz M, Simo JC (1986) An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 23(3):353–366. doi:10.1002/nme.1620230303

    Article  MathSciNet  MATH  Google Scholar 

  56. Osorio E, Bairán JM, Marí AR (2013) Lateral behavior of concrete under uniaxial compressive cyclic loading. Mater Struct 46(5):709–724. doi:10.1617/s11527-012-9928-9

    Article  Google Scholar 

  57. Candappa D, Sanjayan J, Setung S (2001) Complete triaxial stress–strain curves of high-strength concrete. J Mater Civ Eng 13(3):209–215. doi:10.1061/(ASCE)0899-1561(2001)13:3(209)

    Article  Google Scholar 

  58. Kotsovos M, Newman J (1979) A mathematical description of the deformational behaviour of concrete under complex loading. Mag Concr Res 31(107):77–90. doi:10.1680/macr.1979.31.107.77

    Article  Google Scholar 

  59. Kupfer H, Hilsdorf HK, Rusch H (1969) Behavior of concrete under biaxial stresses. J Proc 66(8):656-666

    Google Scholar 

  60. Gopalaratnam VS, Shah SP (1985) Softening response of plain concrete in direct tension. J ACI 82:310–323

    Google Scholar 

  61. Mirmiran A, Shahawy M (1997b) Dilation characteristics of confined concrete. Mech Cohesive Frict Mater 2(3):237–249. doi:10.1002/(SICI)1099-1484(199707)2:3<237::AID-CFM32>3.0.CO;2-2

    Article  Google Scholar 

  62. Karabinis A, Kiousis P (1996) Plasticity computations for the design of the ductility of circular concrete columns. Comput Struct 60(5):825–835. doi:10.1016/0045-7949(95)00442-4

    Article  MATH  Google Scholar 

  63. Karabinis AI, Kiousis PD (1994) Effects of confinement on concrete columns: plasticity approach. J Struct Eng 120(9):2747–2767. doi:10.1061/(ASCE)0733-9445(1994)120:9(2747)

    Article  Google Scholar 

  64. Karabinis AI, Rousakis TC (2002) Concrete confined by FRP material: a plasticity approach. Eng Struct 24(7):923–932. doi:10.1016/S0141-0296(02)00011-1

    Article  Google Scholar 

  65. Berthet JF, Ferrier E, Hamelin P (2005) Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study. Constr Build Mater 19(3):223–232. doi:10.1016/j.conbuildmat.2004.05.012

    Article  Google Scholar 

  66. Anggawidjaja D, Ueda T, Dai J, Nakai H (2006) Deformation capacity of RC piers wrapped by new fiber-reinforced polymer with large fracture strain. Cem Concr Compos 28(10):914–927. doi:10.1016/j.cemconcomp.2006.07.011

    Article  Google Scholar 

  67. Bai YL, Dai JG, Teng J (2014) Cyclic compressive behaviour of concrete confined with large rupture strain FRP composites. J Compos Constr 18(1). doi:10.1061/(ASCE)CC.1943-5614.0000386

    Google Scholar 

  68. Dai JG, Bai YL, Teng J (2011) Behavior and modeling of concrete confined with FRP composites of large deformability. J Compos Constr 15(6). doi:10.1061/(ASCE)CC.1943-5614.0000230

    Google Scholar 

  69. Ispir M (2015) Monotonic and cyclic compression tests on concrete confined with pet-FRP. J Compos Constr. doi:10.1061/(ASCE)CC.1943-5614.0000490

    Google Scholar 

  70. Rousakis TC (2013) Hybrid confinement of concrete by fiber-reinforced polymer sheets and fiber ropes under cyclic axial compressive loading. J Compos Constr 17(5):732–743. doi:10.1061/(ASCE)CC.1943-5614.0000374

    Article  Google Scholar 

  71. Rousakis TC (2014) Hybrid confinement of concrete by fiber-reinforced polymer sheets and fiber ropes under cyclic axial compressive loading. J Mater Civ Eng 26(1):34–44. doi:10.1061/(ASCE)CC.1943-5614.0000374

    Article  Google Scholar 

  72. Rousakis TC (2016) Reusable and recyclable nonbonded composite tapes and ropes for concrete columns confinement. Compos B Eng 103:15–22. doi:10.1016/j.compositesb.2016.08.003

    Article  Google Scholar 

  73. Lam L, Teng J (2004) Ultimate condition of fiber reinforced polymer-confined concrete. J Compos Constr 8(6):539–548. doi:10.1061/(ASCE)1090-0268(2004)8:6(539)

    Article  Google Scholar 

  74. Lam L, Teng JG, Cheung CH, Xiao Y (2006) Frp-confined concrete under axial cyclic compression. Cem Concr Compos 28(10):949–958. doi:10.1016/j.cemconcomp.2006.07.007

    Article  Google Scholar 

  75. Lim JC, Ozbakkaloglu T (2015a) Hoop strains in FRP-confined concrete columns: experimental observations. Mater Struct 48(9):2839–2854. doi:10.1617/s11527-014-0358-8

    Article  Google Scholar 

  76. Mansouri I, Ozbakkaloglu T, Kisi O, Xie T (2016) Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and m5 model tree techniques. Mater Struct 49(10):4319–4334. doi:10.1617/s11527-015-0790-4

    Article  Google Scholar 

  77. Ozbakkaloglu T, Akin E (2012) Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression. J Compos Constr. doi:10.1061/(ASCE)CC.1943-5614

    Google Scholar 

  78. Rousakis TC (2001) Experimental investigation of concrete cylinders confined by carbon FRP sheets under monotonic and cyclic axial compression load. Reasearch Report, Division of Building Technology, Chalmers University of Technology, Gothenburg, Sweden

  79. Ilki A, Kumbasar N (2003) Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections. J Earthq Eng 7(3):381–406. doi:10.1080/13632460309350455

    Google Scholar 

  80. Wang LM, Wu YF (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct 30(2):493–505. doi:10.1016/j.engstruct.2007.04.016

    Article  Google Scholar 

  81. Xiao Q (2013) Computational models for FRP-confined concrete and FRP- confined RC columns. Ph.D. thesis, The Hong Kong Polytechnic University

Download references

Acknowledgements

The authors would like to thank Institut Jean le Rond d’Alembert and the French Ministry of Foreign Affairs for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia Farahmandpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

See Table 3.

Table 3 Nomenclature for all symbols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahmandpour, C., Dartois, S., Quiertant, M. et al. A concrete damage–plasticity model for FRP confined columns. Mater Struct 50, 156 (2017). https://doi.org/10.1617/s11527-017-1016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1016-8

Keywords

Navigation