Skip to main content
Log in

Properties of ordinary concretes incorporating crushed queen scallop shells

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The large quantities of seashells produced in the North-West of France and the depletion of quarries motivates the research of new sources of aggregates. This article examines the influence of incorporating crushed queen scallop shells on ordinary concretes in order to assess the feasibility of reusing marine by products in the form of aggregates. For this purpose four different concrete mixes were produced, one of them used as reference with natural aggregates and the others prepared with 20, 40 and 60 % of crushed queen scallop shells replacing the natural aggregates. Concretes were characterized at fresh state by its workability, the air content and the density, and at hardened state by the mechanical and durability properties. The incorporation of crushed queen scallops causes an increase of the entrapped air of concrete, a reduction of the mechanical properties and an increase of the concrete porosity facilitating the transport of fluids and chloride ions in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CG:

Crushed gravel

CQS:

Crushed queen scallops

CS:

Crushed sand

D eff :

Effective chloride diffusion coefficient

K P :

Water permeability coefficient

OC:

Ordinary concrete

MIP:

Mercury intrusion porosimetry

RH:

Relative humidity

WAP:

Water accessible porosity

WPD:

Water penetration depth

References

  1. NFM (2014) La pêche en Normandie. Normandie Fraîcheur Mer. http://www.normandiefraicheurmer.fr/la-peche-en-normandie/category-12-coquillages.html. Accessed 12 Sept 2014

  2. Asaoka S, Yamamoto T, Kondo S, Hayakawa S (2009) Removal of hydrogen sulphide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresour Technol 100:4127–4132

    Article  Google Scholar 

  3. Barros MC, Bello PM, Bao M, Torrado JJ (2009) From waste to commodity: transforming shells into high purity calcium carbonate. J Clean Prod 17:400–407

    Article  Google Scholar 

  4. Kim YS, Choi YM, Noh DO, Cho SY, Suh HJ (2007) The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chem 103:155–160

    Article  Google Scholar 

  5. Lee YH, Islam SM, Hong SJ, Cho KM, Math RK, Heo JY, Kim H, Yun HD (2010) Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Biosci Biotechnol Biochem 74:1517–1521

    Article  Google Scholar 

  6. Njoku RE, Okon AE, Ikpaki TC (2011) Effects of variation of particle size and weight fraction on the tensile strength and modulus of periwinkle shell reinforced polyester composite. Niger J Technol 30:87–93

    Google Scholar 

  7. Tongamp W, Kano J, Zhang Q, Saito F (2008) Simultaneous treatment of PVC and oyster-shell wastes by mechanochemical means. Waste Manag 28:484–488

    Article  Google Scholar 

  8. Yoon GL, Kim BT, Kim BO, Han SH (2003) Chemical–mechanical characteristics of crushed oyster-shell. Waste Manag 23:825–834

    Article  Google Scholar 

  9. Engelare RC (2012) Etude de valorisation des coproduits marins coquilliers sous forme d’additions et de granulats dans les matériaux cimentaires. Dissertation, University of Caen Basse Normandie

  10. Yang EI, Yi ST, Leem YM (2005) Effect of oyster shell substituted for fine aggregate on concrete characteristics: part I. Fundamental properties. Cem Concr Res 35:2175–2182

    Article  Google Scholar 

  11. Ballester P, Mármol I, Morales J, Sánchez L (2007) Use of limestone obtained from waste of the mussel cannery industry for the production of mortars. Cem Concr Res 37:559–564

    Article  Google Scholar 

  12. Wang HY, Chen PY, Chen JH (2011) Effect of waste oyster shell resurgent on engineering properties of cement mortar. In: Proceedings of international conference on consumer electronics, communications and networks, XianNing, pp 4941–4944. doi:10.1109/CECNET.2011.5769142

  13. Yoon H, Park S, Lee K (2004) Oyster shell as substitute for aggregate in mortar. Waste Manag Res 22:158–170

    Article  Google Scholar 

  14. Nguyen DH, Sebaibi N, Boutouil M, Leleyter L, Baraud F (2013) The use of seashell by-products in pervious concrete pavers. Int J Civ Sci Eng 7:385–392

    Google Scholar 

  15. Simkiss K (1965) The organic matrix of the oyster shell. Comp Biochem Physiol 16:427–435

    Article  Google Scholar 

  16. Tanur AE, Gunari N, Sullan RMA, Kavanagh CJ, Walker GC (2010) Insights into the composition, morphology and formation of the calcareous shell of the serpulid Hydroides dianthus. J Struct Biol 169:145–160

    Article  Google Scholar 

  17. Du L, Folliard KJ (2005) Mechanisms of air entrainment in concrete. Cem Concr Res 35:1463–1471

    Article  Google Scholar 

  18. Neville AM (2004) Properties of concrete. Pearson Education Limited, Harlow

    Google Scholar 

  19. Liu X, Chia KS, Zhang MH (2010) Development of lightweight concrete with high resistance to water and chloride-ion penetration. Cem Concr Compos 32:757–766

    Article  Google Scholar 

  20. AFNOR (2006) EN 196-1: methods of testing cement: determination of strength. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  21. AFNOR (2014) EN 1097-6: tests for mechanical and physical properties of aggregates: determination of particle density and water absorption. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  22. AFNOR (2008) EN 12620: aggregates for concrete. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  23. Cuadrado H, Sebaibi N, Boutouil M, Boudart B (2014) Physical properties and mechanical behavior of concrete made with CQS shells. Proceedings of eco-crete international symposium on sustainability, Reykjavik

  24. AFNOR (2012) EN 933-3: tests for geometrical properties of aggregates: determination of particle shape—Flakiness index. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  25. AFNOR (2007) EN 1744-5: tests for chemical properties of aggregates: Determination of acid soluble chloride salts. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  26. AFNOR (1998) XP P94-047: soils: investigation and testing: determination of the organic matter content—ignition method. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  27. De Paula SM, Silveira M (2009) Studies on molluscan shells: contributions from microscopic and analytical methods. Micron 40:669–690

    Article  Google Scholar 

  28. Dreux G, Festa J (1998) Nouveau guide du béton et de ses constituants. Eyrolles, Paris

    Google Scholar 

  29. De Larrard F (1999) Concrete mixture-proportioning: a scientific approach. E & FN SPON, London

    Google Scholar 

  30. LCPC (2004) Méthode d’essai des lpc n°61: Essai de compacité des fractions granulaires à la table à secousses. Laboratoire Central des Ponts et Chaussées, Paris/Cedex 15

    Google Scholar 

  31. AFNOR (2012) EN 12350-2: testing fresh concrete: slump test. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  32. AFNOR (2012) EN 12350-7: testing fresh concrete: air content—pressure methods. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  33. AFNOR (2012) EN 12390-3: testing hardened concrete: compressive strength of test specimens. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  34. AFNOR (2012) EN 12390-6: testing hardened concrete: tensile splitting strength of test specimens. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  35. AFNOR (2010) EN P18-459: concrete: testing hardened concrete—testing porosity and density. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  36. AFNOR (2012) EN 12390-8: testing hardened concrete: depth of penetration of water under pressure. Association Française de Normalisation, Saint-Denis La Plaine

    Google Scholar 

  37. Valenta O (1970) The permeability and durability of concrete in aggressive conditions. In: Proceedings of 10th international congress on large dams, Montreal, pp 103–117

  38. Prince W, Gagné R (2001) The effects of types of solutions used in accelerated chloride migration tests for concrete. Cem Concr Res 31:775–780

    Article  Google Scholar 

  39. McGrath PF, Hooton RD (1996) Influence of voltage on chloride diffusion coefficients from chloride migration tests. Cem Concr Res 26:1239–1244

    Article  Google Scholar 

  40. Andrade C (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res 23:724–742

    Article  Google Scholar 

  41. Truc O, Ollivier JP, Carcassès M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady-state migration test. Cem Concr Res 30:217–226

    Article  Google Scholar 

  42. Zhang T, Gjorv OE (1994) An electrochemical method for accelerated testing of chloride diffusivity in concrete. Cem Concr Res 24:1534–1548

    Article  Google Scholar 

  43. Rucker-Gramm P, Beddoe RE (2010) Effect of moisture content of concrete on water uptake. Cem Concr Res 40:102–108

    Article  Google Scholar 

  44. Bermúdez MA (2007) Corrosión de las armaduras del hormigón armado en ambiente marino: Zona de carrera de mareas y zona sumergida. Dissertation, E.T.S.I. Caminos, Canales y Puertos (UPM)

  45. Kartini K, Mahmud HB, Hamidah MS (2010) Absorption and permeability performance of Selangor rice husk ash blended grade 30 concrete. J Eng Sci Technol 5:1–16

    Google Scholar 

  46. AFGC (2004) Conception des bétons pour une durée de vie donnée des ouvrages: Maîtrise de la durabilité vis-à-vis de la corrosion des armatures et de l’alcali-réaction. Association Française de Génie Civil, Paris

    Google Scholar 

  47. Wang X (2012) Modélisation du transport multi-espèces dans les matériaux cimentaires saturés ou non saturés et éventuellement carbonatés. Dissertation, University of Paris-Est

Download references

Acknowledgments

The results presented in this article come from a collaborative Project, RECIF, selected under the European Cross-border Cooperation Programme INTERREG IV A France (Channel)—England, and co-funded by the ERDF. The authors wish to thank the co-financiers and all project partners for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Cuadrado-Rica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuadrado-Rica, H., Sebaibi, N., Boutouil, M. et al. Properties of ordinary concretes incorporating crushed queen scallop shells. Mater Struct 49, 1805–1816 (2016). https://doi.org/10.1617/s11527-015-0613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0613-7

Keywords

Navigation