Skip to main content

Microstructure and Durability Properties of Concretes Based on Oyster Shell Co-products

  • Conference paper
  • First Online:
Proceedings of the 75th RILEM Annual Week 2021 (RW 2021)

Part of the book series: RILEM Bookseries ((RILEM,volume 40))

Included in the following conference series:

  • 1053 Accesses

Abstract

One of the solutions to reduce the environmental impact of the construction sector is the use of alternative materials, more sustainable and with tailored or new properties. This paper proposes the valorization of oyster shell co-products within cementitious materials. These co-products from oyster farm could be used to produce composites with interesting properties. Shell co-products are used in this study to produce load-bearing concretes. These concretes show good durability properties with a lower chloride diffusion coefficient and a higher resistivity compared to references concretes. The optimum mix is composed of CEM III and 50%vol of oyster shell as aggregate. A good cohesion between the particles of oyster shell and the binding matrix is observed, which explains the feasibility to get concretes of mechanical resistance such as the references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO: The State of World Fisheries and Aquaculture 2020. Sustainability in action, Rome (2020)

    Google Scholar 

  2. Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K.: Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860 (2008). https://doi.org/10.1016/j.cemconres.2008.01.002

    Article  Google Scholar 

  3. Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Lee, S.C., Goh, W.I., Yuen, C.W.: Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 162, 751–764 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.009

    Article  Google Scholar 

  4. Eziefula, U.G., Ezeh, J.C., Eziefula, B.I.: Properties of seashell aggregate concrete: A review. Constr. Build. Mater. 192, 287–300 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.096

    Article  Google Scholar 

  5. AFNOR NF P18–459: Essai pour béton durci - Essai de porosité et de masse volumique (Tests for determining porosity and density for hard concrete) (2010)

    Google Scholar 

  6. AFNOR NF P18–462: Essai sur béton durci: Essai accéléré de migration des ions chlorure en régime non-stationnaire, Détermination du coefficient de diffusion apparent des ions chlorure (2012)

    Google Scholar 

  7. Tang, L.: Guideline for practical use of methods for testing the resistance of concrete to chloride ingress, CHLORTEST - EU funded research project “Resistance of concrete to chloride ingress - from laboratory tests to in-field performance” G6RD-CT-2002–00855 (2005)

    Google Scholar 

  8. Mizuta, D.D., Wikfors, G.H.: Seeking the perfect oyster shell: a brief review of current knowledge. Rev. Aquac. 11, 586–602 (2019). https://doi.org/10.1111/raq.12247

    Article  Google Scholar 

  9. De Larrard, T., Bary, B., Adam, E., Kloss, F.: Influence of aggregate shapes on drying and carbonation phenomena in 3D concrete numerical samples. Comput. Mater. Sci. 72, 1–14 (2013). https://doi.org/10.1016/j.commatsci.2013.01.039

    Article  Google Scholar 

  10. Jepsen, M.T., Mathiesen, D., Munch-Petersen, C., Bager, D.: Durability of resource saving “green” types of concrete. Proc. - fib-Symposium Concr. Environ. 2001, 41–42 (2001)

    Google Scholar 

  11. Tang L.: Chloride transport in concrete – measurement and prediction (2010)

    Google Scholar 

  12. Jóźwiak-Niedźwiedzka, D.: Effect of fluidized bed combustion fly ash on the chloride resistance and scaling resistance of concrete. In: RILEM TC 211-PAE Final Conference on Concrete in Aggressive Aqueous Environments. Performance, Testing and Modeling, vol. 2, pp. 556–563. Toulouse, France (2009)

    Google Scholar 

  13. Vollpracht, A., Lothenbach, B., Snellings, R., Haufe, J.: The pore solution of blended cements: a review. Mater. Struct. 49(8), 3341–3367 (2015). https://doi.org/10.1617/s11527-015-0724-1

    Article  Google Scholar 

  14. Honorio, T., Carasek, H., Cascudo, O.: May self-diffusion of ions computed from molecular dynamics explain the electrical conductivity of pore solutions in cement-based materials? Mater. Struct. 53(3), 1–13 (2020). https://doi.org/10.1617/s11527-020-01507-7

    Article  Google Scholar 

  15. Baroghel-bouny, V., Henry, D.: Vieillissement des bétons en milieu naturel : une expérimentation pour le XXI e siècle III – Propriétés de durabilité des bétons mesurées sur éprouvettes conservées en laboratoire. 13–59 (2002)

    Google Scholar 

  16. Berodier, E., Scrivener, K.: Understanding the filler effect on the nucleation and growth of C-S-H. J. Am. Ceram. Soc. 97, 3764–3773 (2014). https://doi.org/10.1111/jace.13177

    Article  Google Scholar 

  17. Ez-zaki, H., Diouri, A., Kamali-Bernard, S.: Transport properties of blended cement based on dredged sediment and shells. Adv. Mater. Lett. 8, 481–485 (2017). https://doi.org/10.5185/amlett.2017.1434

    Article  Google Scholar 

  18. Adu-Amankwah, S., Zajac, M., Stabler, C., Lothenbach, B., Black, L.: Influence of limestone on the hydration of ternary slag cements. Cem. Concr. Res. 100, 96–109 (2017). https://doi.org/10.1016/j.cemconres.2017.05.013

    Article  Google Scholar 

  19. Deboucha, W., Sebaibi, N., Mendili, Y. El, Fabien, A., Alengaram, U.J., Leklou, N., Hamdadou, M.N., Bourdot, A., Gascoin, S.: Reactivity effect of calcium carbonate on the formation of carboaluminate phases in ground granulated blast furnace slag blended cements. Sustain 13 (2021). https://doi.org/10.3390/su13116504

  20. Bonnard, M.: Identification of valuable compounds from the shell of the edible oyster Crassostrea gigas to cite this version : HAL Id : tel-03282617 DE L ’ UNIVERSITÉ DE MONTPELLIER En Chimie Séparative , Matériaux et Procédés École doctorale Sciences Chimiques Balard (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Bourdot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourdot, A., Martin-Cavaillé, C., Vacher, M., Honorio, T., Sebaibi, N., Bennacer, R. (2023). Microstructure and Durability Properties of Concretes Based on Oyster Shell Co-products. In: Escalante-Garcia, J.I., Castro Borges, P., Duran-Herrera, A. (eds) Proceedings of the 75th RILEM Annual Week 2021. RW 2021. RILEM Bookseries, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-031-21735-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21735-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21734-0

  • Online ISBN: 978-3-031-21735-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics