Skip to main content
Log in

Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A new fully coupled multiphase model for hygrothermal analysis and prediction of salt diffusion and crystallization in porous building materials is presented. The relative humidity, the temperature, the concentration of the dissolved salt and the concentration of precipitated salts are assumed as independent variables. A suitable modelling of the crystallization/dissolution and hydration/dehydration processes allows considering salts with hydrous and anhydrous crystals. Some numerical applications on fired-clay bricks show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A (kg/m2/s1/2):

Water adsorption coefficient

a w (–):

Water activity of salt solution

C i (m/s):

Growth rate constant of the i-th crystallized form

c lsw (kg/m3):

Concentration of the liquid water trapped in hydrated crystals

c π α (kg/m3):

Concentration of α in π-phase (mass of α in π-phase per unit volume of porous material)

c w (kg/m3):

Concentration of moisture (mass of moisture per unit volume of porous material)

D l (s):

Liquid conductivity of pure water

D v (m2/s):

Vapour permeability coefficient

D airv (m2/s):

Vapour permeability coefficient for the dry air

D s (m2/s):

Diffusion coefficient of a salt free solution

e (J/m3):

Total enthalpy per unit volume of porous medium

e πα (J/kg):

Enthalpy of α in π-phase

\( E_{{a_{i} }} \)(J/mol):

Activation energy of the specific process of the i-th crystallized form

f l, f s, f v (–):

Correction functions

g l, g v, g ω (–):

Correction factors

h (–):

Pore relative humidity

h α (–):

Environmental humidity

h * (–):

Equilibrium relative humidities for the transition due to the hydration/dehydration process

\( \bar{h} \) (–):

Relative humidity prescribed at the boundary

\( H_{{\text{cry}}_i} \) (J/kg):

Latent heat of crystallization of the i-th crystallized form

H eva (J/kg):

Latent heat of evaporation

\( H_{{\text{hyd}}_{ij}} \) (J/kg):

Latent heat of hydration/dehydration from the j-th crystallized form to the i-th one

h hyd (J/mol):

Molar latent heat of hydration/dehydration

ΔH L (J/mol):

Excess crystallization enthalpy per unit mole of crystallized salt

\( \overline{{\Delta_{\text{sol}} H^{\infty } }} \)(J/mol):

Molar dissolution enthalpy at infinite dilution of the anhydrous salt

j gw (kg/m2/s):

Flux of vapour water

j l w (kg/m2/s):

Flux of liquid water

j ls (kg/m2/s):

Flux of dissolved salt

j lws (kg/m2/s):

Flux of the liquid phase

j l s,diff (kg/m2/s):

Diffusive flux of dissolved salt

j lw,diff (kg/m2/s):

Diffusive flux of liquid water

j e (J/m2/s):

Enthalpy flux

j q (J/m2/s):

Heat flux

j w (kg/m2/s):

Moisture flux

\( K_{{C_{i} }} \) (m/s):

Growth rate coefficient of the i-th crystallized form

\( K_{{H_{ij} }} \) (m/s):

Kinetic hydration parameter

\( K_{{H_{ji} }} \) (m/s):

Kinetic dehydration parameter

K g (s):

Vapour permeability

K l (s):

Liquid conductivity of the salt solution

K s (m2/s):

Salt diffusion coefficient

L i (μm):

Average length of the i-th crystal in a certain instant t

\( \hat{L} \) (J/kg):

Excess enthalpy of a electrolytic solution containing 1 kg of water

m (mol/kg):

Molality of the liquid phase

m π α (kg):

Mass of α in π-phase

M π α (g/mol):

Molar mass of α in π-phase

\( M_{{{\text{H}}_{ 2} {\text{O}}}} \) (g/mol):

Molar mass of pure water

M ls (g/mol):

Molar mass of salt mixture solute

N (–):

Number of crystallized forms

N A (1/mol):

Avogadro constant (6.022 × 1023)

n (1/m3):

Total amount of nuclei per unit volume of solution

n i (1/m3):

Amount of nuclei of the i-th crystallized form per unit volume of solution

\( \overline{{{\kern 1pt} n}} \) (–):

Total number of nuclei in the REV

\( \overline{{{\kern 1pt} n}}_{i} \) (–):

Number of nuclei in the REV of the i-th crystallized form

\( P_{{{\text{cry}}_{i} }} \) (–):

Crystallization process order of the i-th crystallized form

\( P_{{{\text{hyd}}_{ij}}} ,P_{{{\text{hyd}}_{ji}}} \) (–):

Hydration/dehydration process order

p c (Pa):

Capillary pressure

p v (Pa):

Vapour pressure

p v,sat (Pa):

Saturation vapour pressure of the salt mixture

p v,sat w (Pa):

Saturation vapour pressure of the pure water

q w (kg/m2/s):

Prescribed normal flux of moisture

q ω (kg/m2/s):

Prescribed normal flux of salt

q T (J/m2/s):

Prescribed normal flux of heat

R (J/mol/K):

Ideal gas constant

R v (J/kg/K):

Gas constant of water vapour

r p (μm):

Average pore radius

\( S_{\alpha }^{\pi } \) (m3/m3):

Degree of saturation of α in π-phase (volume occupied by α in π-phase per unit volume of pores)

\( S_{\text{ws}}^{\text{l}} \) (m3/m3):

Degree of saturation of the solution (volume occupied by the solution per unit volume of pores)

t (s):

Time

T (K):

Temperature

\( \bar{T} \) (K):

Prescribed temperature at the boundary

T α (K):

Prescribed environmental temperature

\( V_{\text{cell}}^{i} \) (m3):

Unit cell volume of the i-th crystallized form

\( \left( {V_{\text{m}} } \right)_{\alpha }^{\pi } \) (m3/mol):

Molar volume of the α in π-phase

X w (–):

Mole fraction of the pure water

Z i (–):

Number of formula units in the unit cell of the i-th crystal

α 0 (–):

Threshold value at which the dissolution starts

β π α (J/kg/K):

Specific heat capacity of α in π-phase

β eff (J/kg/K):

Effective specific heat capacity of the porous medium

ϕ 0 (m3/m3):

Total open porosity (volume of voids per unit volume of porous medium)

ϕ eff (m3/m3):

Effective porosity

γ (–):

Mean activity coefficient of the dissolved salt

γ w (kg/m2/s):

Humidity convective coefficient

γ T (J/m2/s/K):

Thermal convective coefficient- convective heat transfer coefficient

λ eff (J/s/m/K):

Effective thermal conductivity

λ drym (J/s/m/K):

Thermal conductivity of the dry material

λ w (J/s/m/K):

Thermal conductivity of the liquid water

\( \lambda_{{{\text{s}}_{i} }} \) (J/s/m/K):

Thermal conductivity of salt in i-th crystallized form

μ lsw (kg/m3/s):

Rate of liquid water trapped in hydrated salt crystals

μ lgw (kg/m3/s):

Water evaporation rate

ν 0 (–):

Number of water molecules trapped per salt mole

ρ π α (kg/m3):

Mass density of α in π-phase

ρ lws (kg/m3):

Mass density of the liquid phase

ρ eff (kg/m3):

Effective mass density of the porous media

τ v (–):

Vapour resistance factor

τ l (–):

Tortuosity

ω (kg/kg):

Mass of the dissolved salt per unit mass of liquid phase

ω sat (kg/kg):

Mass of the dissolved salt per unit mass of liquid phase at the saturation

\( \bar{\omega } \) (kg/kg):

Mass of the dissolved salt per unit mass of liquid phase prescribed at the boundary

References

  1. Haupl P, Grunewald J, Fechner H, Stopp H (1997) Coupled heat air and moisture transfer in building structures. Int J Heat Mass Transf 40:1633–1642

    Article  MATH  Google Scholar 

  2. Hansen KK (1986) Sorption isotherms catalogue, Technical report 162/86, Technical, University of Denmark

  3. Pel L (1995) Moisture transport in porous building materials. Dissertation, Technische Universiteit Eindhoven

  4. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, Chichester

    MATH  Google Scholar 

  5. Tariku F, Kumaran MK, Fazio P (2010) Transient model for coupled heat, air and moisture transfer through multilayered porous media. Int J Heat Mass Transf 53:3035–3044

    Article  MATH  Google Scholar 

  6. Grunewald J, Haupl P, Bomberg P (2003) Towards an engineering model of material characteristics for input to HAM transport simulations—part 1: an approach. J Build Phys 26:343–366

    Article  Google Scholar 

  7. Castellazzi G, de Miranda S, Formica G, Molari L, Ubertini F (2015) Coupled hygro-mechanical multiscale analysis of masonry walls. Eng Struct 84:266–278

    Article  Google Scholar 

  8. Castellazzi G, Colla C, de Miranda S, Formica G, Gabrielli E, Molari L, Ubertini F (2013) A coupled multiphase model for hygrothermal analysis of masonry structures and prediction of stress induced by salt crystallization. Constr Build Mater 41:717–731

    Article  Google Scholar 

  9. Castellazzi G, de Miranda S, Grementieri L, Molari L, Ubertini F (2015) Modelling of non-isothermal salt transport and crystallization in historic masonry. Key Eng Mater 624:222–229

    Article  Google Scholar 

  10. Koniorczyk M, Gawin D (2008) Heat and moisture transport in porous building materials containing salt. J Build Phys 31:279–300

    Article  MATH  Google Scholar 

  11. Koniorczyk M, Gawin D (2011) Numerical modelling of salt transport and precipitation in nonisothermal partially saturated porous media considering kinetics of salt phase changes. Transp Porous Media 87:57–76

    Article  Google Scholar 

  12. Koniorczyk M, Konca P (2013) Experimental and numerical investigation of sodium sulphate crystallization in porous materials. Heat Mass Transfer 49:437–449

    Article  Google Scholar 

  13. Derluyn H (2012) Salt transport and crystallization in porous limestone: neutron-X-ray imaging and poromechanical modelling. Ph.D. dissertation, ETH Zurich, Diss. ETH No. 20673

  14. Nicolai A (2007) Modeling and numerical simulation of salt transport and phase transitions in unsaturated porous building materials. Ph. D. dissertation, Syracuse University, New York

  15. Espinosa RM, Franke L, Deckelmann G (2008) Phase changes of salts in porous materials crystallization, hydration and deliquescence. Constr Build Mater 22:1758–1773

    Article  Google Scholar 

  16. Schrefler BA (2002) Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl Mech Rev 55:351–389

    Article  Google Scholar 

  17. Gawin D, Schrefler BA (1996) Thermo-hydro-mechanical analysis of partially saturated porous materials. Eng Comput 13:113–143

    Article  MATH  Google Scholar 

  18. Espinosa RM, Franke L, Deckelmann G (2008) Model for the mechanical stress due to salt crystallization in porous materials. Constr Build Mater 22:1350–1367

    Article  Google Scholar 

  19. de Miranda S, Garikipati K, Molari L, Ubertini F (2009) A simple solution strategy for coupled piezo-diffusion in elastic solids. Comput Mech 44:191–203

    Article  MATH  Google Scholar 

  20. Scheffler GA, Plagge R (2010) A whole range hygric material model: modelling liquid and vapour transport properties in porous media. Int J Heat Mass Transf 53:286–296

    Article  MATH  Google Scholar 

  21. Sykora J, Krejci T, Sejnoha M (2012) Computational homogenization of non-stationary transport processes in masonry structures. J Comput Appl Math 236:4745–4755

    Article  MATH  Google Scholar 

  22. Marliancy P, Solimando R, Bouroukba L, Schuffenecker L (2000) Thermodynamics of crystallization of sodium sulfate decahydrate in H2O-NaCl-Na2SO4: application to Na2SO4∙10H2O-based latent heat storage materials. Thermochim Acta 344:85–94

    Article  Google Scholar 

  23. Steiger M, Kiekbusch J, Nicolai A (2008) An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr Build Mater 22:1841–1850

    Article  Google Scholar 

  24. Treschler HR (ed) (2001) Moisture analysis and condensation control in building envelopes. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  25. Garrecht H, Hilsdorf HK, Kropp J (2013) Higroscopic salts—influence on the moisture behaviour of structural elements. In: Durability of building materials and components: proceedings of the fifth international conference, Routledge

  26. Karoglou M, Moropolou A, Maroulis ZB, Krokida MK (2005) Water sorption isotherms of some building materials. Dry Technol 23:289–303

    Article  Google Scholar 

  27. Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4-H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306

    Article  Google Scholar 

  28. COMSOL Multiphysics Modeling Guide (2008) COMSOL AB. (http://math.nju.edu.cn/help/mathhpc/doc/comsol/modeling.pdf)

  29. Ramires MLV, de Castro CAN, Nagasaka Y, Nagashima A, Assael MJ, Wakenam WA (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377–1381

    Article  Google Scholar 

  30. Haynes WM (2012–2013) CRC handbook of chemistry and physics, 93rd edn. CRC Press, Boca Raton

  31. Ahl J (2004) Salt diffusion in brick structures. J Mater Sci 39:4247–4254

    Article  Google Scholar 

  32. Brodale G, Giauque WF (1958) The heat of hydration of sodium sulfate. Low temperature heat capacity and entropy of sodium sulfate decahydrate. J Am Chem Soc 80:2042–2044

    Article  Google Scholar 

Download references

Acknowledgments

The work reported in this paper has been supported by 3ENCULT and KISADAMA Project. Our thanks to the European Commission, to Joint Heritage European Programme (JHEP) and to MIUR for Project funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Molari.

Appendices

Appendix 1

Some useful data are reported in this section.

1.1 Thermal conductivity of the liquid water function of temperature [29]

Temperature (K)

Thermal conductivity of liquid water (W/m/K)

275

0.5606

280

0.5715

285

0.5818

290

0.5917

295

0.6009

300

0.6096

305

0.6176

310

0.6252

315

0.6322

320

0.6387

325

0.6445

330

0.6499

335

0.6546

1.2 Molar dissolution enthalpy at infinite dilution in J mol−1 (\( 273,15 < T < 373,15\;{\text{K}} \)):\( \overline{{\Delta_{\text{sol}} H^{\infty } }} = a_{\infty } + b_{\infty } (T - T_{0} )\quad {\text{with}}\quad T_{0} = 298,15\,{\text{K}} \) [22]

Solid species

\( a_{\infty } \) (J/mol)

\( b_{\infty } \) (J/mol/K)

NaCl

3799.7

−115.80

Na2SO4

−1380.4

−302.09

1.3 Molar latent heat of hydration/dehydration for H2O–Na2SO4 solutions function temperature (\( 291,15 < T < 305,15\;{\text{K}} \)) \( h_{\text{hyd}} = h_{\text{hyd}} (T_{0} ) + \Delta_{\text{hyd}} C_{\text{p}} (T - T_{0} ) \) with \( T_{0} = 298,15\,{\text{K}} \) [22]

Solid species

\( h_{\text{hyd}} (T_{0} ) \) (J/mol)

\( \Delta_{\text{hyd}} C_{\text{p}} \) (J/mol/K)

Na2SO4

−81 556

−687.91

Appendix 2

Some useful expressions are derived in this section:

2.1 Latent heat of crystallization for an anhydrous salt \( H_{{{\text{cry}}_{j}}} \) [22]

$$ H_{{{\text{cry}}_j}} = \frac{{{m_{\text{w}}^{\text{l}}}\!^{\prime}\Delta_{\text{sol}} \hat{H}(m^{\prime}) - m_{\text{w}}^{\text{l}} \Delta_{\text{sol}} \hat{H}(m)}}{{x\;M_{{{\text{s}}_{j} }}^{\text{s}} }} $$

where:

$$ \Delta_{\text{sol}} \hat{H}(m^{\prime}) = \hat{L}(m^{\prime}) + m^{\prime}\,{\kern 1pt} \overline{{\Delta_{\text{sol}} H^{\infty } }} \,\,\Delta_{\text{sol}} \hat{H}(m) = \hat{L}(m) + m\,{\kern 1pt} \overline{{\Delta_{\text{sol}} H^{\infty } }} $$

\( m^{\prime} \) is the molality of the electrolytic solution at the end of the crystallization process, \( m \) is the molality of the electrolytic solution at the beginning of the crystallization process, \( \hat{L}(m^{\prime}) \) and \( \hat{L}(m) \) is the excess enthalpy of a electrolytic solution containing 1 kg of water, calculated through the Pitzer’s model as reported in [22], \( x \) is the number of moles of salt formed during the crystallization process

$$ \begin{aligned} H_{{{\text{cry}}_{j}}} \,&= \,\frac{{{m_{\text{w}}^{\text{l}}}\!^{{\prime} }\left( {\hat{L}(m^{{\prime }}) + m^{{\prime }}\,{\kern 1pt} \overline{{\Delta_{\text{sol}} H^{\infty } }} } \right) - m_{w}^{l} \left( {\hat{L}(m) + m\,{\kern 1pt} \overline{{\Delta_{\text{sol}} H^{\infty } }} } \right)}}{{x\;M_{{{\text{s}}_{j} }}^{\text{s}} }} \hfill \\ \,&=\, \frac{1}{{M_{{{\text{s}}_{j} }}^{\text{s}} }}\left[ {\frac{{{\kern 1pt} \overline{{\Delta_{\text{sol}} H^{\infty } }} }}{x\;}\left( {{m_{\text{w}}^{\text{l}}}\!^{{\prime }}m^{\prime } - m_{\text{w}}^{\text{l}} \,m} \right) + \frac{{{m_{\text{w}}^{\text{l}}}\!^{{\prime} }\,\hat{L}(m') - m_{\text{w}}^{\text{l}} \,\hat{L}(m)}}{x}} \right] \hfill \\ \,&= \,\frac{1}{{M_{{{\text{s}}_{j} }}^{\text{s}} }}\left( { - {\kern 1pt} \overline{{\Delta_{\text{sol}} H^{\infty } }} + \Delta H_{L} } \right). \hfill \\ \end{aligned} $$

Taking into account that \( \frac{{{m_{\text{w}}^{\text{l}}}\!^{{\prime }}m^{\prime } - m_{\text{w}}^{\text{l}} \,m}}{x} = - 1 \) and defining \( \Delta H_{L} \) as:

$$ \Delta H_{L} = \frac{{{m_{\text{w}}^{\text{l}}}\!^{{\prime }}\,\hat{L}(m^{\prime}) - m_{\text{w}}^{\text{l}} \,\hat{L}(m)}}{x} .$$

Kinetic hydration/dehydration parameter for sulphate solutions

$$ K_{H_{ij}} = \frac{{K_{\text{esp}} \,M_{{{\text{s}}_{i} }}^{\text{s}} }}{{10\,M_{{{\text{H}}_{ 2} {\text{O}}}} {\kern 1pt} \rho_{{{\text{s}}_{i} }}^{\text{s}} \pi {\kern 1pt} r_{p}^{2} }} = \frac{{K_{\text{esp}} \,\left( {V_{\text{m}} } \right)_{{{\text{s}}_{i} }}^{\text{s}} }}{{10\,M_{{{\text{H}}_{ 2} {\text{O}}}} {\kern 1pt} \pi {\kern 1pt} r_{\text{p}}^{2} }}\,\,K_{H_{ji}} = \frac{{K_{\text{esp}} \,M_{{{\text{s}}_{j} }}^{\text{s}} }}{{10\,M_{{{\text{H}}_{ 2} {\text{O}}}} {\kern 1pt} \rho_{{{\text{s}}_{j} }}^{\text{s}} \pi {\kern 1pt} r_{\text{p}}^{2} }} = \frac{{K_{\text{esp}} \,\left( {V_{\text{m}} } \right)_{{{\text{s}}_{j} }}^{\text{s}} }}{{10\,M_{{{\text{H}}_{ 2} {\text{O}}}} {\kern 1pt} \pi {\kern 1pt} r_{\text{p}}^{2} }} $$

\( i \) = hydrated crystallized form

\( j \) = dehydrated crystallized form

\( K_{\text{esp}} \) = 0.45–0.50 mg/min experimental water absorption coefficient for sodium sulphate solutions [15].

The coefficient of the equations of the model are reported in the following.

In particular those related to Eq. (66) are:

$$ \phi_{h} = \frac{{\partial c_{\text{w}} }}{\partial h},\,\,\phi_{h\omega } = \frac{{\partial c_{\text{w}} }}{\partial \omega },\,\,\phi_{hT} = \frac{{\partial c_{\text{w}} }}{\partial T},\,\,\phi_{{hs_{i} }} = \frac{{\partial c_{\text{w}} }}{{\partial c_{{{\text{s}}_{i} }}^{\text{s}} }}, $$
$$ C_{hh} = \frac{{D_{\text{v}} }}{{R_{\text{v}} T}}p_{\text{v,sat}} + (1 - \omega )\frac{{\rho_{\text{w}}^{\text{l}} R_{\text{v}} TK_{\text{l}} }}{h},\,\,C_{hT} = \frac{{D_{\text{v}} h}}{{R_{\text{v}} T}}\frac{{\partial p_{\text{v,sat}} }}{\partial T} + (1 - \omega )\rho_{\text{w}}^{\text{l}} R_{\text{v}} K_{\text{l}} \ln (h), $$
$$ C_{h\omega } = \frac{{D_{\text{v}} h}}{{R_{\text{v}} T}}\frac{{\partial p_{\text{v,sat}} }}{\partial \omega } - \rho_{\text{ws}}^{\text{l}} K_{\text{s}} . $$

The coefficients related to Eq. (67) are:

$$ \phi _{\omega } = \frac{{c_{{\text{w}}} }}{{(1 - \omega )^{2} }} + \frac{\omega }{{1 - \omega }}\phi _{{h\omega }} ,{\mkern 1mu} {\mkern 1mu} \phi _{{\omega h}} = \frac{\omega }{{1 - \omega }}\phi _{h} ,{\mkern 1mu} {\mkern 1mu} \phi _{{\omega T}} = \frac{\omega }{{1 - \omega }}\phi _{{hT}} ,{\mkern 1mu} {\mkern 1mu} \phi _{{{\text{s}}_{i} }} = 1 + \frac{\omega }{{1 - \omega }}\phi _{{h{\text{s}}_{i} }} , $$
$$ C_{\omega \omega } = \rho_{\text{ws}}^{\text{l}} K_{\text{s}} ,\,\,C_{\omega h} = \omega \frac{{\rho_{\text{w}}^{\text{l}} R_{\text{v}} TK_{\text{l}} }}{h},\,\,C_{\omega T} = \omega \rho_{\text{w}}^{\text{l}} R_{\text{v}} TK_{\text{l}} \ln (h). $$

The coefficients related to the energy balance Eq. (68) are:

$$ C_{TT} = \lambda_{\text{eff}} + \left( {\beta_{\text{w}}^{\text{g}} T + H_{\text{eva}} } \right)\frac{{D_{\text{v}} h}}{{R_{\text{v}} T}}\frac{{\partial p_{\text{v,sat}} }}{\partial T} + \left( {\beta_{\text{w}}^{\text{l}} (1 - \omega ) + \beta_{\text{s}}^{\text{l}} \omega } \right)\rho_{\text{w}}^{\text{l}} R_{\text{v}} K_{\text{l}} \ln (h)T, $$
$$ C_{Th} = \left( {\beta_{\text{w}}^{\text{g}} T + H_{\text{eva}} } \right)\frac{{D_{\text{v}} }}{{R_{\text{v}} T}}p_{\text{v,sat}} + \left( {\beta_{\text{w}}^{\text{l}} (1 - \omega ) + \beta_{\text{s}}^{\text{l}} \omega } \right)\frac{{\rho_{\text{w}}^{\text{l}} R_{\text{v}} T^{2} K_{\text{l}} }}{h}, $$
$$ C_{T\omega } = \left( {\beta_{\text{w}}^{\text{g}} T + H_{\text{eva}} } \right)\frac{{D_{\text{v}} h}}{{R_{\text{v}} T}}\frac{{\partial p_{\text{v,sat}} }}{\partial \omega } + \left( {\beta_{\text{s}}^{\text{l}} - \beta_{\text{w}}^{\text{l}} } \right)\rho_{\text{ws}}^{\text{l}} K_{\text{s}} T, $$
$$ B_{\text{w}} = \left( {\beta_{\text{w}}^{\text{g}} - \beta_{\text{w}}^{\text{l}} } \right)T + H_{\text{eva}} ,\,\,B_{\text{w}}^{*} = \beta_{\text{w}}^{\text{l}} T, $$
$$ \left( {\varphi_{{T{\text{s}}_{i} }} } \right)_{\text{cry}} = \left( {\beta_{{{\text{s}}_{i} }}^{\text{s}} - \beta_{\text{s}}^{\text{l}} } \right)T + H_{{{\text{cry}}_{i} }} ,\,\,\left( {\varphi_{{T{\text{s}}_{i} }} } \right)_{\text{hyd}} = \left( {\beta_{{{\text{s}}_{i} }}^{\text{s}} - \beta_{\text{s}}^{\text{l}} } \right)T + H_{{{\text{hyd}}_{ij} }} , $$
$$ \varphi_{T} = \beta_{\text{eff}} \rho_{\text{eff}} . $$

Finally, coefficients of the kinetic Eq. (69) are:

$$ C_{{{\text{ss}}_{i} }} = S_{\text{ws}}^{\text{l}} \left( {n_{i} \phi_{0} \rho_{{{\text{s}}_{i} }}^{\text{s}} \pi r_{\text{p}}^{2} } \right)K_{{C_{i} }} ,\,\,C_{{{\text{s}}h_{i} }} = \frac{{\pi {\kern 1pt} r_{\text{p}}^{2} \rho_{{{\text{s}}_{i} }}^{\text{s}} }}{{V_{\text{tot}} }}K_{H_{ij}} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellazzi, G., de Miranda, S., Grementieri, L. et al. Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration. Mater Struct 49, 1039–1063 (2016). https://doi.org/10.1617/s11527-015-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0557-y

Keywords

Navigation