Skip to main content
Log in

Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Concrete is undoubtedly the most important and widely used construction material of the late twentieth century. Yet, mathematical models that can accurately capture the particular material behavior under all loading conditions of significance are scarce at best. Although concepts and suitable models have existed for quite a while, their practical significance is low due to the limited attention to calibration and validation requirements and the scarcity of robust, transparent and comprehensive methods to perform such tasks. In addition, issues such as computational cost, difficulties associated with calculating the response of highly nonlinear systems, and, most importantly, lack of comprehensive experimental data sets have hampered progress in this area. This paper attempts to promote the use of advanced concrete models by (a) providing an overview of required tests and data preparation techniques; and (b) making a comprehensive set of concrete test data, cast from the same batch, available for model development, calibration, and validation. Data included in the database ‘http://www.baunat.boku.ac.at/cd-labor/downloads/versuchsdaten’ comprise flexure tests of four sizes, direct tension tests, confined and unconfined compression tests, Brazilian splitting tests of five sizes, and loading and unloading data. For all specimen sets the nominal stress–strain curves and crack patterns are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wille K, Naaman AE, El-Tawil S, Parra-Montesinos GJ (2012) Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Mater Struct 45:309–324

    Article  Google Scholar 

  2. Naik TR, Kumar R, Ramme BW, Canpolat F (2012) Development of high-strength, economical self-consolidating concrete. Constr Build Mater 30:463–469

    Article  Google Scholar 

  3. Fantilli AP, Vallini P, Chiaia B (2011) Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression. Cem Concr Compos 33(4):520–527

    Article  Google Scholar 

  4. Wang H, Belarbi A (2011) Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Constr Build Mater 25(5):2391–2401

    Article  Google Scholar 

  5. Yang E-H, Li VC (2012) Tailoring engineered cementitious composites for impact resistance. Cem Concr Res 42(8):1066–1071

  6. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  7. Hillerborg A (1985) The theoretical basis of a method to determine the fracture energy \({G}_f\) of concrete. Mater Struct 18(4):291–296

    Article  Google Scholar 

  8. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  9. Irwin GR (1958) Fracture, vol VI of Encyclopaedia of physics. Springer, Berlin

  10. Hilsdorf HK, Lorman WR, Monfore GE (1973) Triaxial testing of nonreinforced concrete specimens. J Test Eval 1(4):330–335

  11. Bažant ZP, Bishop FC, Chang TP (1986) Confined compression tests of cement paste and concrete up to 300 Ksi. ACI J Proc 83(4):553–560

  12. Gabet T, Malécot Y, Daudeville L (2008) Triaxial behaviour of concrete under high stresses: influence of the loading path on compaction and limit states. Cem Concr Res 38(3):403–412

    Article  Google Scholar 

  13. Bažant ZP, Kim JJH, Brocca M (1999) Finite strain tube-squash test of concrete at high pressures and shear angles up to 70 degrees. ACI Mater J 96(5):580–592

    Google Scholar 

  14. Brocca M, Bažant ZP (2001) Microplane finite element analysis of tube-squash test of concrete with shear angles up to 70. Int J Numer Methods Eng 52(10):1165–1188

    Article  MATH  Google Scholar 

  15. Jirásek M, Bažant ZP (2002) Inelastic analysis of structures. Wiley, London

  16. Han D-J (2007) Plasticity for structural engineers. J. Ross Publishing, Fort Lauderdale

  17. Bažant ZP, Cedolin L (1991) Stability of structures: elastic, inelastic, fracture and damage theories, 2nd edn. Oxford University Press, New York

    MATH  Google Scholar 

  18. Bittnar Z, Šejnoha J (1996) Numerical methods in structural mechanics. ASCE Publications, New York

  19. Taylor GI (1938) Plastic strain in metals. J Inst Met 63:307–324

    Google Scholar 

  20. Lin TH (1968) Theory of inelastic structures. Wiley, New York

  21. Bažant ZP, Byung HO (1985) Microplane model for progressive fracture of concrete and rock. J Eng Mech 111(4):559–582

    Article  Google Scholar 

  22. Cusatis G, Zhou X (2013) High order microplane theory for quasi-brittle materials with multiple characteristic lengths. J Eng Mech 140(7):04014046

  23. Bažant ZP, Ožbolt J (1992) Compression failure of quasibrittle material: nonlocal microplane model. J Eng Mech 118(3):540–556

    Article  Google Scholar 

  24. Hasegawa T, Bažant ZP (1993) Nonlocal microplane concrete model with rate effect and load cycles. I: general formulation. J Mater Civ Eng 5(3):372–393

    Article  Google Scholar 

  25. Caner FC, Bažant ZP (2012) Microplane model M7 for plain concrete: I. Formulation. J Eng Mech 139(12), 1724–1735

  26. Di Luzio G, Cusatis G (2013) Solidification-microprestress-microplane (SMM) theory for concrete at early age: theory, validation and application. Int J Solids Struct 50(6):957–975

  27. Cusatis G, Beghini A, Bažant ZP (2008) Spectral stiffness microplane model for quasibrittle composite laminates, part I: theory. J Appl Mech 75(2):021009–021009-9

  28. Beghini A, Cusatis G, Bažant ZP (2008) Spectral stiffness microplane model for quasibrittle composite laminates, part II: calibration and validation. J Appl Mech 75(2):021010–021010

  29. de Borst R, Gutirrez MA, Wells GN, Remmers JJC, Askes H (2004) Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. Int J Numer Methods Eng 60(1):289–315

    Article  MATH  Google Scholar 

  30. Jirásek M (1998) Nonlocal models for damage and fracture: comparison of approaches. Int J Solids Struct 35(31–32):4133–4145

    Article  MATH  Google Scholar 

  31. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Article  Google Scholar 

  32. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  33. Needleman A, Tvergaard V (1987) An analysis of ductile rupture modes at a crack tip. J Mech Phys Solids 35(2):151–183

    Article  MATH  Google Scholar 

  34. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  35. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282

    Article  MATH  Google Scholar 

  36. Rocco C, Guinea GV, Planas J, Elices M (2001) Review of the splitting-test standards from a fracture mechanics point of view. Cem Concr Res 31(1):73–82

    Article  Google Scholar 

  37. Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J Eng Mech 129:1439

    Article  Google Scholar 

  38. Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: II. Computation and validation. J Eng Mech 129:1449

    Article  Google Scholar 

  39. Cusatis G, Bažant ZP, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52):7154–7171

    Article  MATH  Google Scholar 

  40. Cusatis G (2011) Strain-rate effects on concrete behavior. Int J Impact Eng 38(4):162–170

    Article  Google Scholar 

  41. Bažant ZP, Tabbara MR, Kazemi MT, Pijaudier-Cabot G (1990) Random particle model for fracture of aggregate or fiber composites. J Eng Mech 116(8):1686–1705

    Article  Google Scholar 

  42. Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941

    Article  Google Scholar 

  43. Yip M, Li Z, Liao B, Bolander JE (2006) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140:113–124

    Article  MATH  Google Scholar 

  44. Gianluca C, Hikaru N (2011) Discrete modeling of concrete materials and structures. Cem Concr Compos 33(9):865–866

    Article  Google Scholar 

  45. Cusatis G, Mencarelli A, Pelessone D, Baylot J (2011) Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation. Cem Concr Compos 33(9):891–905

    Article  Google Scholar 

  46. Cusatis G, Pelessone D, Mencarelli A (2011) Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory. Cem Concr Compos 33(9):881–890

    Article  Google Scholar 

  47. Schauffert EA, Cusatis G (2011) Lattice discrete particle model for fiber-reinforced concrete. I: theory. J Eng Mech 138(7):826–833

    Article  Google Scholar 

  48. Schauffert EA, Cusatis G, Pelessone D, O’Daniel J, Baylot J (2012) Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior. J Eng Mech 138(7):834–841

    Article  Google Scholar 

  49. Cusatis G (2013) The lattice discrete particle model (LDPM) for the numerical simulation of concrete behavior subject to penetration. Wiley, London, pp 369–387

  50. Alnaggar M, Cusatis G, Di Luzio G (2013) Lattice discrete particle modeling (LDPM) of Alkali Silica reaction (ASR) deterioration of concrete structures. Cem Concr Compos 41:45–59

    Article  Google Scholar 

  51. Kim KT, Zdeněk P, Bažant P, Yu Q (2013) Non-uniqueness of cohesive-crack stress-separation law of human and bovine bones and remedy by size effect tests. Int J Fract 181(1):67–81

    Article  Google Scholar 

  52. Caner FC, Bažant ZP, Wendner R (2013) Microplane model M7f for fiber reinforced concrete. Eng Fract Mech 105:41–57

  53. Hoover CG, Bažant ZP, Vorel J, Wendner R, Hubler MH (2013) Comprehensive concrete fracture tests: description and results. Eng Fract Mech 114:92–103

    Article  Google Scholar 

  54. Morteza MHA, Kazemi MT, Nikbin IM, Amiri JV (2013) The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Mater Des 50:267–276

    Article  Google Scholar 

  55. ASTM (2010) C293: standard test method for flexural strength of concrete (using simple beam with center-point loading)

  56. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  57. Stefansky W (1972) Rejecting outliers in factorial designs. Technometrics 14(2):469–479

    Article  MATH  Google Scholar 

  58. Model code 2010—final draft, vol 1. Technical Report, fib, 2012

  59. ACI (2008) 209.2R: guide for modeling and calculating shrinkage and creep in hardened concrete. Technical Report

  60. Hoover CG, Bažant ZP (2013) Comprehensive concrete fracture tests: size effects of types 1 & 2, crack length effect and postpeak. Eng Fract Mech 110:281–289

    Article  Google Scholar 

  61. Nakayama J (1965) Direct measurement of fracture energies of brittle heterogeneous materials. J Am Ceram Soc 48(11):583–587

    Article  Google Scholar 

  62. Tattersall HG, Tappin G (1966) The work of fracture and its measurement in metals, ceramics and other materials. J Mater Sci 1(3):296–301

    Article  Google Scholar 

  63. Concrete—part 1: specification, performance, production and conformity, 2000

  64. Eurocode 2 (2004) Design of concrete structures, part 1–1: general rules and rules for buildings

  65. ASTM (2012) C39: standard test method for compressive strength of cylindrical concrete specimens

  66. Hoover CG, Bažant ZP (2014) Universal size-shape effect law based on comprehensive concrete fracture tests. J Eng Mech 140(3):473–479

    Article  Google Scholar 

  67. Weibull W (1939) The phenomenon of rupture in solids, vol 153. Royal Swedish Institute of Engineering Research, Stockholm, pp 1–55

  68. Le J-L, Bažant ZP, Bazant MZ (2011) Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. J Mech Phys Solids 59(7):1291–1321

    Article  MATH  MathSciNet  Google Scholar 

  69. Le J-L, Bažant ZP (2011) Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling. J Mech Phys Solids 59(7):1322–1337

    Article  MATH  MathSciNet  Google Scholar 

  70. ASTM (2011) C496: standard test method for splitting tensile strength of cylindrical concrete specimens

  71. CEN (2009) EN12390-6: testing hardened concrete

  72. Rocco C, Guinea GV, Planas J, Elices M (1999) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater Struct 32(6):437–444

    Article  Google Scholar 

  73. Tang T (1994) Effects of load-distributed width on split tension of un-notched and notched cylindrical specimens. J Test Eval 22(5):401–409

    Article  Google Scholar 

  74. Rocco C, Guinea GV, Planas J, Elices M (1999) Size effect and boundary conditions in the Brazilian test: experimental verification. Mater Struct 32(3):210–217

    Article  Google Scholar 

  75. Bažant ZP, Kazemi MT, Hasegawa T, Mazars J (1991) Size effect in Brazilian split-cylinder tests. Measurements and fracture analysis. ACI Mater J 88(3):325–332

    Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development for part of the analysis is gratefully acknowledged, as is the financial support from the U.S. Department of Transportation, provided through Grant No. 20778 from the Infrastructure Technology Institute of Northwestern University, for the initial size effect investigation. The work of G. Cusatis was supported under NSF Grant No. 0928448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Cusatis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendner, R., Vorel, J., Smith, J. et al. Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models. Mater Struct 48, 3603–3626 (2015). https://doi.org/10.1617/s11527-014-0426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0426-0

Keywords

Navigation