Skip to main content
Log in

Prediction of Stress–Strain Behavior of PET FRP-Confined Concrete Using Machine Learning Models

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) fiber-reinforced polymer (FRR) has been recently developed, which possesses a bilinear tensile stress–strain relationship and a large rupture strain (LRS) capacity. This study presents a novel approach for accurately predicting the stress–strain behavior of PET FRP-confined concrete using machine learning (ML) techniques. A comprehensive dataset comprising 154 axial compression test specimens, including both circular and noncircular cases, was utilized for training and testing ML models. Three advanced ML models, namely extreme gradient boosting (XGBoost), random forest regression (RFR), and k-nearest neighbors (KNN), were applied to predict mechanical properties for both circular and noncircular specimens. XGBoost consistently outperformed RFR and KNN, demonstrating superior accuracy in predicting stress–strain curves for both specimen types. Performance evaluation relied on key metrics such as coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE). Furthermore, the predicted stress–strain curves generated by XGBoost were compared to experimental data and a mechanism model, highlighting the superiority of XGBoost in capturing critical curve points and emphasizing its accuracy and consistency. Moreover, feature importance analysis was carried out and it revealed that parameters like the number of PET FRP layers, fiber thickness, and corner radius significantly influenced the stress–strain behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang, K.; Han, Q.; Bai, Y.; Xiuli, D.: Data-driven ultimate conditions prediction and stress-strain model for FRP-confined concrete. Compos. Struct. 242, 112094 (2020). https://doi.org/10.1016/j.compstruct.2020.112094

    Article  Google Scholar 

  2. Zeng, J.J.; Guo, Y.C.; Gao, W.Y.; Chen, W.P.; Li, L.J.: Stress-strain behavior of concrete in circular concrete columns partially wrapped with FRP strips. Compos. Struct. 200, 810–828 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.05.001

    Article  Google Scholar 

  3. Wang, D.; Wang, Z.; Smith, S.T.; Yu, T.: Seismic performance of CFRP-confined circular high-strength concrete columns with high axial compression ratio. Constr. Build. Mater. 134, 91–103 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2016.12.108

    Article  Google Scholar 

  4. Ouyang, L.J.; Gao, W.Y.; Zhen, B.; Lu, Z.D.: Seismic retrofit of square reinforced concrete columns using basalt and carbon fiber-reinforced polymer sheets: a comparative study. Compos. Struct. 162, 294–307 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2016.12.016

    Article  Google Scholar 

  5. Lin, G.; Teng, J.G.: Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading. J. Compos. Constr. 21(4), 04017003 (2017). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000772

    Article  Google Scholar 

  6. Guo, Y.C.; Xiao, S.H.; Luo, J.W.; Ye, Y.Y.; Zeng, J.J.: Confined concrete in fiber-reinforced polymer partially wrapped square columns: axial compressive behavior and strain distributions by a particle image velocimetry sensing technique. Sensors. 18(12), 4118 (2018). https://doi.org/10.3390/S18124118

    Article  Google Scholar 

  7. Li, P.; Wu, Y.F.; Zhou, Y.; Xing, F.: Stress-strain model for FRP-confined concrete subject to arbitrary load path. Compos. B Eng. 163, 9–25 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.11.002

    Article  Google Scholar 

  8. Zeng, J.J.; Ye, Y.Y.; Gao, W.Y.; Smith, S.T.; Guo, Y.C.: Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high- and ultra-high-strength concrete. J. Build. Eng.. 30, 101243 (2020). https://doi.org/10.1016/j.jobe.2020.101243

    Article  Google Scholar 

  9. Khan, A.Q.; Pimanmas, A.; Chindaprasirt, P.: Flexural strengthening of RC beams using sisal fibre reinforced polymer (SFRP) composite with anchorage systems. Results Eng (2023). https://doi.org/10.1016/j.rineng.2023.101116

    Article  Google Scholar 

  10. Dai, J.-G.; Bai, Y.-L.; Teng, J.G.: Behavior and modeling of concrete confined with frp composites of large deformability. J. Compos. Constr. 15(6), 963–973 (2011). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000230

    Article  Google Scholar 

  11. Lam, L.; Teng, J.G.: Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 8(6), 539–548 (2004). https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)

    Article  Google Scholar 

  12. Ispir, M.: Monotonic and cyclic compression tests on concrete confined with PET-FRP. J. Compos. Constr. 19(1), 04014034 (2014). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000490

    Article  Google Scholar 

  13. Pimanmas, A.; Saleem, S.: Dilation characteristics of PET FRP–confined concrete. J. Compos. Construct. (2018). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000841

    Article  Google Scholar 

  14. Saleem, S.; Hussain, Q.; Pimanmas, A.: Compressive behavior of PET FRP–confined circular, square, and rectangular concrete columns. J. Compos. Construct. (2017). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000754

    Article  Google Scholar 

  15. Saleem, S.; Pimanmas, A.; Rattanapitikon, W.: Lateral response of PET FRP-confined concrete. Constr. Build. Mater. 159, 390–407 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2017.10.116

    Article  Google Scholar 

  16. Zeng, J.J.; Gao, W.Y.; Duan, Z.J.; Bai, Y.L.; Guo, Y.C.; Ouyang, L.J.: Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns. Constr. Build. Mater. 234, 117383 (2020). https://doi.org/10.1016/J.CONBUILDMAT.2019.117383

    Article  Google Scholar 

  17. Saleem, S.; Hussain, Q.; Pimanmas, A.: Compressive behavior of PET FRP–confined circular, square, and rectangular concrete columns. J. Compos. Constr. 21(3), 04016097 (2016). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000754

    Article  Google Scholar 

  18. Guo, Y.-C.; Ye, Y.-Y.; Guan-Lin, J.-F.L.; Bai, Y.-L.; Zeng, J.-J.: Effective usage of high strength steel tubes: axial compressive behavior of hybrid FRP-concrete-steel solid columns. Thin-Walled Struct. 154, 106796 (2020). https://doi.org/10.1016/j.tws.2020.106796

    Article  Google Scholar 

  19. Bai, Y.L.; Dai, J.G.; Ozbakkaloglu, T.: Cyclic stress-strain model incorporating buckling effect for steel reinforcing bars embedded in FRP-confined concrete. Compos. Struct. 182, 54–66 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2017.09.007

    Article  Google Scholar 

  20. Huang, L.; Zhang, S.S.; Yu, T.; Wang, Z.Y.: Compressive behaviour of large rupture strain FRP-confined concrete-encased steel columns. Constr. Build. Mater. 183, 513–522 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.06.074

    Article  Google Scholar 

  21. Gao, W.Y.; Dai, J.-G.; Teng, J.G.: Three-level fire resistance design of FRP-strengthened RC beams. J. Compos. Construct. 22(3), 840 (2018). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000840

    Article  Google Scholar 

  22. Micelli, F.; Mazzotta, R.; Leone, M.; Aiello, M.A.: Review study on the durability of FRP-confined concrete. J. Compos. Construct. 19(3), 520 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000520

    Article  Google Scholar 

  23. Gao, W.Y.; Dai, J.-G.; Teng, J.G.: Simple method for predicting temperatures in insulated, FRP-strengthened RC members exposed to a standard fire. J. Compos. Constr. 19(6), 04015013 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000566

    Article  Google Scholar 

  24. Xiao, J.; Qiang, C.; Nanni, A.; Zhang, K.: Use of sea-sand and seawater in concrete construction: current status and future opportunities. Constr. Build. Mater. 155, 1101–1111 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2017.08.130

    Article  Google Scholar 

  25. Wang, J.; Feng, P.; Hao, T.; Yue, Q.: Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes. Constr. Build. Mater. 147, 272–285 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2017.04.169

    Article  Google Scholar 

  26. Li, Y.L.; Zhao, X.L.; Raman Singh, R.K.; Al-Saadi, S.: Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns. Thin-Walled Struct. 108, 163–184 (2016). https://doi.org/10.1016/J.TWS.2016.08.016

    Article  Google Scholar 

  27. Li, Y.L.; Teng, J.G.; Zhao, X.L.; Raman, R.S.: Theoretical model for seawater and sea sand concrete-filled circular FRP tubular stub columns under axial compression. Eng. Struct. 160, 71–84 (2018). https://doi.org/10.1016/J.ENGSTRUCT.2018.01.017

    Article  Google Scholar 

  28. Ispir, M.: Monotonic and cyclic compression tests on concrete confined with PET-FRP. J. Compos. Construct. 19(1), 4014034 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000490

    Article  MathSciNet  Google Scholar 

  29. Han, Q.; Yuan, W.; Bai, Y.; Du, X.: Compressive behavior of large rupture strain (LRS) FRP-confined square concrete columns: experimental study and model evaluation. Mater. Struct. Mater. Construct. 53(4), 20 (2020). https://doi.org/10.1617/s11527-020-01534-4

    Article  Google Scholar 

  30. Bai, Y.L.; Dai, J.G.; Mohammadi, M.; Lin, G.; Mei, S.J.: Stiffness-based design-oriented compressive stress-strain model for large-rupture-strain (LRS) FRP-confined concrete. Compos. Struct. 223, 110953 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.110953

    Article  Google Scholar 

  31. Zhou, Y.; Liu, X.; Xing, F.; Cui, H.; Sui, L.: Axial compressive behavior of FRP-confined lightweight aggregate concrete: an experimental study and stress-strain relation model. Constr. Build. Mater. 119, 1–15 (2016). https://doi.org/10.1016/J.CONBUILDMAT.2016.02.180

    Article  Google Scholar 

  32. Xiao, Y.; Wu, H.: Compressive behavior of concrete confined by carbon fiber composite jackets. J. Mater. Civ. Eng. 12(2), 139–146 (2000). https://doi.org/10.1061/(asce)0899-1561(2000)12:2(139)

    Article  Google Scholar 

  33. Xiao, Y.; Wu, H.: Compressive behavior of concrete confined by various types of FRP composite jackets. J. Reinf. Plast. Compos. 22(13), 1187 (2003)

    Article  Google Scholar 

  34. Lam, L.; Teng, J.G.: Design-oriented stress–strain model for FRP-confined concrete. Constr. Build. Mater. 17(6–7), 471–489 (2003). https://doi.org/10.1016/S0950-0618(03)00045-X

    Article  Google Scholar 

  35. Ilki, A.; Kumbasar, N.; Koc, V.: Low strength concrete members externally confined with FRP sheets. Struct. Eng. Mech. 18(2), 167–194 (2004). https://doi.org/10.12989/SEM.2004.18.2.167

    Article  Google Scholar 

  36. Wu, G.; Wu, Z.S.; Lü, Z.T.: Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr. Build. Mater. 21(5), 1107–1121 (2007). https://doi.org/10.1016/J.CONBUILDMAT.2005.12.014

    Article  Google Scholar 

  37. Youssef, M.N.; Feng, M.Q.; Mosallam, A.S.: Stress–strain model for concrete confined by FRP composites. Compos. B Eng. 38(5–6), 614–628 (2007). https://doi.org/10.1016/J.COMPOSITESB.2006.07.020

    Article  Google Scholar 

  38. Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z.: Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 13(4), 269–278 (2009). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012

    Article  Google Scholar 

  39. Benzaid, R.; Mesbah, H.; Chikh, N.E.: “FRP-confined concrete cylinders: axial compression experiments and strength model. J. Reinf. Plast. Compos. 29(16), 2469–2488 (2010). https://doi.org/10.1177/0731684409355199

    Article  Google Scholar 

  40. Yu, Y.F.; Huang, P.J.; Chen, Q.J.; Huang, T.L.; Lai, K.C.: On the design of semi-structured multi-star hybrid-overlays for multi-attribute range queries. Lect. Comput. Sci. 6104, 451–460 (2010). https://doi.org/10.1007/978-3-642-13067-0_47/COVER

    Article  Google Scholar 

  41. Ozbakkaloglu, T.; Lim, J.C.: Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model. Compos. B Eng. 55, 607–634 (2013). https://doi.org/10.1016/J.COMPOSITESB.2013.07.025

    Article  Google Scholar 

  42. Amir M.; and Mohsen S.: Dilation characteristics of confined concrete,” Mechanics of Cohesive-frictional Materials, 2(3) (1998)

  43. “Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes | Request PDF.” Accessed: Sep. 21, 2023. [Online]. Available: https://www.researchgate.net/publication/279891625_Confinement_model_for_axially_loaded_concrete_confined_by_circular_fiber-reinforced_polymer_tubes

  44. Chun, S.-C.: Load carrying capacity and ductility of RC columns confined by carbon fiber reinforced polymers.

  45. Marques, S.P.C.; Dos, D.C.; Marques, S.C.; Lins da Silva, J.; Cavalcante, M.A.A.: Model for analysis of short columns of concrete confined by fiber-reinforced polymer. J. Compos. Construct. 8(4), 332–340 (2004). https://doi.org/10.1061/(asce)1090-0268(2004)8:4(332)

    Article  Google Scholar 

  46. Binici, B.: An analytical model for stress–strain behavior of confined concrete. Eng. Struct. 27(7), 1040–1051 (2005). https://doi.org/10.1016/J.ENGSTRUCT.2005.03.002

    Article  Google Scholar 

  47. Teng, J.G.; Huang, Y.L.; Lam, L.; Ye, L.P.: Theoretical model for fiber-reinforced polymer-confined concrete. J. Compos. Constr. 11(2), 201–210 (2007). https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)

    Article  Google Scholar 

  48. Jiang, T.; Teng, J.G.: Analysis-oriented stress–strain models for FRP–confined concrete. Eng. Struct. 29(11), 2968–2986 (2007). https://doi.org/10.1016/J.ENGSTRUCT.2007.01.010

    Article  Google Scholar 

  49. Saenz, L.P.: discussion of” equation for the stress-strain curve of concrete” by desayi and krishnan. J. Am. Concr. Inst. 61, 1229–1235 (1964)

    Google Scholar 

  50. Hoshikuma, J.; Kawashima, K.; Nagaya, K.; Taylor, A.W.: Stress-strain model for confined reinforced concrete in bridge piers. J. Struct. Eng. 123(5), 624–633 (1997). https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)

    Article  Google Scholar 

  51. Ozbakkaloglu, T.; Lim, J.C.; Vincent, T.: FRP-confined concrete in circular sections: review and assessment of stress–strain models. Eng. Struct. 49, 1068–1088 (2013). https://doi.org/10.1016/J.ENGSTRUCT.2012.06.010

    Article  Google Scholar 

  52. Al-Salloum, Y.A.: Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Compos. B Eng. 38(5–6), 640–650 (2007). https://doi.org/10.1016/J.COMPOSITESB.2006.06.019

    Article  Google Scholar 

  53. Lam, L.; Teng, J.G.: Design-oriented stress-strain model for frp-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 22(13), 1149–1186 (2003). https://doi.org/10.1177/0731684403035429

    Article  Google Scholar 

  54. Wu, Y.-F.; Wei, Y.: General stress-strain model for steel- and frp-confined concrete. J. Compos. Constr. 19(4), 04014069 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000511

    Article  MathSciNet  Google Scholar 

  55. Dong, C.X.; Kwan, A.K.H.; Ho, J.C.M.: Effects of confining stiffness and rupture strain on performance of FRP confined concrete. Eng. Struct. 97, 1–14 (2015). https://doi.org/10.1016/J.ENGSTRUCT.2015.03.037

    Article  Google Scholar 

  56. Shehata, I.A.; Carneiro, L.A.; Shehata, L.C.: Strength of short concrete columns confined with CFRP sheets. Mater. Struct. 35(1), 50–58 (2002)

    Article  Google Scholar 

  57. Pimanmas, A.; Saleem, S.: Evaluation of existing stress-strain models and modeling of PET FRP–confined concrete. J. Mater. Civ. Eng. 31(12), 2941 (2019). https://doi.org/10.1061/(asce)mt.1943-5533.0002941

    Article  Google Scholar 

  58. Khan, A.Q.; Naveed, M.H.; Rasheed, M.D.; Miao, P.: Prediction of compressive strength of fly ash-based geopolymer concrete using supervised machine learning methods. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08283-w

    Article  Google Scholar 

  59. Peng, Y.; Unluer, C.: Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques. Constr. Build. Mater. 316, 125785 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125785

    Article  Google Scholar 

  60. Ahmad, A.; Ahmad, W.; Aslam, F.; Joyklad, P.: Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Stud. Constr. Mater. 16, e00840 (2022). https://doi.org/10.1016/j.cscm.2021.e00840

    Article  Google Scholar 

  61. Ma, C.; Wang, S.; Zhao, J.; Xiao, X.; Xie, C.; Feng, X.: Prediction of shear strength of RC deep beams based on interpretable machine learning. Constr. Build Mater. 387, 131640 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131640

    Article  Google Scholar 

  62. Sanad, A.; Saka, M.P.: Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. J. Struct. Eng. 127(7), 818–828 (2001). https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)

    Article  Google Scholar 

  63. Mohammadizadeh, M.R.; Esfandnia, F.; Khatibinia, M.: Prediction of shear strength of reinforced concrete deep beams using neuro-fuzzy inference system and meta-heuristic algorithms. Civ. Eng. Infrastruct. J 56(1), 137–157 (2023). https://doi.org/10.22059/CEIJ.2022.334953.1803

    Article  Google Scholar 

  64. Keshtegar, B.; Gholampour, A.; Thai, D.K.; Taylan, O.; Trung, N.T.: Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete. Compos. Struct. 262, 113644 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.113644

    Article  Google Scholar 

  65. Zhang, Z.; Liu, Q.; Wu, D.: Predicting stress–strain curves using transfer learning: knowledge transfer across polymer composites. Mater. Des. 218, 110700 (2022). https://doi.org/10.1016/J.MATDES.2022.110700

    Article  Google Scholar 

  66. Zeng, J.J.; Duan, Z.J.; Gao, W.Y.; Bai, Y.L.; Ouyang, L.J.: Compressive behavior of FRP-wrapped seawater sea-sand concrete with a square cross-section. Constr. Build Mater. 262, 120881 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120881

    Article  Google Scholar 

  67. Bai, Y.L.; Dai, J.G.; Teng, J.G.: Buckling of steel reinforcing bars in FRP-confined RC columns: an experimental study. Constr. Build. Mater. 140, 403–415 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.149

    Article  Google Scholar 

  68. Han, Q.; Yuan, W.Y.; Ozbakkaloglu, T.; Bai, Y.L.; Du, X.L.: Compressive behavior for recycled aggregate concrete confined with recycled polyethylene naphthalate/terephthalate composites. Constr. Build Mater. 261, 120498 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120498

    Article  Google Scholar 

  69. Patel, S.; Park, B.; Ezzati-Jivan, N.; and Fournier, Q.: Automated cause analysis of latency outliers using system-level dependency graphs. In: IEEE International Conference on Software Quality, Reliability and Security, QRS, Institute of Electrical and Electronics Engineers, pp. 422–433 (2021). doi: https://doi.org/10.1109/QRS54544.2021.00054

  70. Songwon S.: A review and comparison of methods for detecting outliers in univariate data sets,” (2006)

  71. Alhakeem, Z.M.; Jebur, Y.M.; Henedy, S.N.; Imran, H.; Bernardo, L.F.A.; Hussein, H.M.: Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with gridsearchcv hyperparameter-optimization techniques. Materials 15(21), 7432 (2022). https://doi.org/10.3390/MA15217432

    Article  Google Scholar 

  72. Anggoro, D.A.; Mukti, S.S.: Performance comparison of grid search and random search methods for hyperparameter tuning in extreme gradient boosting algorithm to predict chronic kidney failure. Int. J. Intell. Eng. Syst. 14(6), 198–207 (2021). https://doi.org/10.22266/ijies2021.1231.19

    Article  Google Scholar 

  73. Shekar, B.H.; Dagnew, G.: Grid search-based hyperparameter tuning and classification of microarray cancer data. In: 2019 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019, Feb. 2019, doi: https://doi.org/10.1109/ICACCP.2019.8882943.

  74. Sklearn L.: Tuning the hyper-parameters of an estimator — Scikit-learn 1.3.1. Accessed: Sep. 25, 2023. [Online]. Available: https://scikit-learn.org/stable/modules/grid_search.html

  75. Bischl, B., et al.; “Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges,” Jul. 2021, Accessed: Sep. 25, 2023. [Online]. Available: http://arxiv.org/abs/2107.05847

  76. Lorenzo, P.R.; Nalepa, J.; Kawulok, M.; Ramos, L.S. and Pastor, J.R.: Particle swarm optimization for hyper-parameter selection in deep neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 481–488 (2017). doi: https://doi.org/10.1145/3071178.3071208.

  77. Elgeldawi, E.; Sayed, A.; Galal, A.R.; Zaki, A.M.: Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. Informatics 8(4), 80407 (2021). https://doi.org/10.3390/informatics8040079

    Article  Google Scholar 

  78. Benkessirat A.; and Benblidia N.: “Fundamentals of feature selection: An overview and comparison,” Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA. 2019 (2019), doi: https://doi.org/10.1109/AICCSA47632.2019.9035281.

  79. Jason B.: “an introduction to feature selection,” Machine Learning Mastery.

  80. Rahul B.; Laxmi S.: “Feature selection techniques in machine learning,” Geeks for Geeks.

  81. Lundberg, S.M.; and Lee, S.I.: “A Unified Approach to Interpreting Model Predictions. Adv Neural Inf Process Syst, 2017: 4766–4775, May 2017, Accessed: Sep. 22, 2023. [Online]. Available: https://arxiv.org/abs/1705.07874v2

  82. L. S. Shapley, “17. A Value for n-Person Games,” Contributions to the Theory of Games (AM-28), Volume II, pp. 307–318, May 2016, doi: https://doi.org/10.1515/9781400881970-018/HTML.

  83. Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee, “Consistent individualized feature attribution for tree ensembles,” Cornell University Computer Science-Machine Learning, (2018)

  84. Christoph Molnar, Interpretable Machine Learning. 2019. Accessed: Sep. 22, 2023. [Online]. Available: https://books.google.com.pk/books?hl=en&lr=&id=jBm3DwAAQBAJ&oi=fnd&pg=PP1&ots=EgAUYoHJSY&sig=GPYl0cdtF2USN_Jpw_iuRZJKwO0&redir_esc=y#v=onepage&q&f=false

  85. Liu, H.; Shen, X.; Tang, X.; Liu, J.: “Day-ahead electricity price probabilistic forecasting based on SHAP feature selection and LSTNet quantile regression. Energies (Basel). 16(13), 5152 (2023). https://doi.org/10.3390/en16135152

    Article  Google Scholar 

  86. T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, doi: https://doi.org/10.1145/2939672.

  87. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002). https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  MathSciNet  Google Scholar 

  88. Chen, M.; Liu, Q.; Chen, S.; Liu, Y.; Zhang, C.H.; Liu, R.: XGboost-based algorithm interpretation and application on post-fault transient stability status prediction of power system. IEEE Access 7, 13149–13158 (2019). https://doi.org/10.1109/ACCESS.2019.2893448

    Article  Google Scholar 

  89. Friedman, J.; Hastie, T.; Tibshirani, R.: Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Statist. 28(2), 337–407 (2000). https://doi.org/10.1214/AOS/1016218223

    Article  MathSciNet  Google Scholar 

  90. Sri Chandrahas, N.; Choudhary, B.S.; Vishnu Teja, M.; Venkataramayya, M.S.; Krishna Prasad, N.S.R.: XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data. Appl. Sci. (Switz.) 12(10), 5269 (2022). https://doi.org/10.3390/app12105269

    Article  Google Scholar 

  91. L. Breiman, “Random Forests,” (2001)

  92. A. Liaw and M. Wiener, “Classification and regression by randomforest,” 2002. [Online]. Available: http://www.stat.berkeley.edu/

  93. Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B.: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build Mater. 210, 713–719 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.189

    Article  Google Scholar 

  94. Cover, T.M.; Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  95. Wu, X.; et al.: Top 10 algorithms in data mining. Knowl. Information Syst. 14(1), 1–37 (2007). https://doi.org/10.1007/S10115-007-0114-2

    Article  Google Scholar 

  96. Jiang, S.; Pang, G.; Wu, M.; Kuang, L.: An improved K-nearest-neighbor algorithm for text categorization. Expert Syst. Appl. 39(1), 1503–1509 (2012). https://doi.org/10.1016/J.ESWA.2011.08.040

    Article  Google Scholar 

  97. Pan, Z.; Wang, Y.; Pan, Y.: A new locally adaptive k-nearest neighbor algorithm based on discrimination class. Knowl Based Syst 204, 106185 (2020). https://doi.org/10.1016/j.knosys.2020.106185

    Article  Google Scholar 

  98. Li, B.; Chen, Y.W.; Chen, Y.Q.: The nearest neighbor algorithm of local probability centers. IEEE Trans. Syst. Man Cybern. B Cybern. 38(1), 141–154 (2008). https://doi.org/10.1109/TSMCB.2007.908363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Qayyum Khan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.Q., Naveed, M.H., Rasheed, M.D. et al. Prediction of Stress–Strain Behavior of PET FRP-Confined Concrete Using Machine Learning Models. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09086-3

Keywords

Navigation