Skip to main content
Log in

Gamma ray transmission technique applied to porous phase characterization of low-porosity ceramic samples

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The aim of this study is to apply gamma ray transmission (GRT), a non destructive technique, in the structural characterization of low-porosity ceramic samples. GRT technique is based on the attenuation that photons of an incident radiation beam undergo when passing through the material. With this technique the porosity of alumina (Al2O3) and boron carbide (B4C) ceramic samples, was determined. The equipment employed comprises a 241Am (Americium) gamma ray source (59.6 keV and 100 mCi), a 50.8 mm × 50.8 mm NaI (Tl) scintillation detector coupled to a standard Gamma Ray Transmission system and a micrometric automated table for sample movement. The porosity profile of the samples shows a homogeneous porosity distribution, within the spatial resolution of the employed transmission system. The mean porosity values determined for Al2O3 and B4C were 17.8 (±1.3 %) and 3.87 (±0.43 %), respectively. Statistical treatment of these results was performed and showed that the mean porosity values determined by Gamma Ray Transmission technique are the same as those supplied by the manufacturer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GRT:

Gama rays transmission

Al2O3 :

Alumina

B4C:

Boron carbide

Φ:

Porosity

Μ :

Linear attenuation coefficient

ξ:

Mass attenuation coefficient

References

  1. Bueno S, Hernández MG, Sánchez T, Anaya JJ, Baudín C (2008) Non-destructive characterisation of alumina/aluminium titanate composites using a micromechanical model and ultrasonic determinations Part I. Evaluation of the effective elastic constants of aluminium titanate. Ceram Int 34:181–188

    Article  Google Scholar 

  2. Cunha-e-Silva RM, Appoloni CR, Parreira PS, Espinoza-Quiñones FR, Coimbra MM, Aragão PHA (2000) Two media method for gamma ray attenuation coefficient measurement of archaeological ceramic samples. Appl. Radiat. and Isto 53:1011–1016

    Article  Google Scholar 

  3. Datye A, Koneti S, Gomes G, Wu KH, Lin HT (2010) Synthesis and characterization of aluminum oxide–boron carbide coatings by air plasma spraying. Ceram Int 36:1517–1522

    Article  Google Scholar 

  4. De With G (1984) High temperature fracture of boron carbide: experiments and simple theoretical models. J Mater Sci 19:457–466

    Article  Google Scholar 

  5. Dong H, Zhu X, Lu K (2008) Morphology and composition of nickel–boron nanolayer coating on boron carbide particles. J Mater Sci 43:4247–4256

    Article  Google Scholar 

  6. Ferraz ESB (1974) Determinação simultânea de densidade e umidade de solos por atenuação de raios gama do 137C, S e 241Am. Livre-Docência Thesys, ESALQ-USP

    Google Scholar 

  7. Gerward L, Guilbert N, Jensen KB, Levring H (2001) X-ray absorption in matter. Reengineering XCOM. Radiat Phys Chem 60:23–24

    Article  Google Scholar 

  8. Granger BG, Guizard C, Addad A (2007) Sintering of an ultra pure α-alumina powder: I. Densification, grain growth and sintering path. J Mater Sci 42:6316–6324

    Article  Google Scholar 

  9. Gust WH, Royce EB (1971) Dynamic yield strengths of B4C, BeO, and Al2O3 ceramics. J Appl Phys 42:276–295

    Article  Google Scholar 

  10. He X, Zhang YZ, Mansell JP, SU B (2008) Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. J Mater Sci: Mater Med 19:2743–2749

    Article  Google Scholar 

  11. Hubbell JH, Veigele WJ, Briggs EA, Brown RT, Cromer DT, Howerton RJ (1975) Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J Phys Chem Ref Data 4:471–538; Erratum in 6:615–616

    Google Scholar 

  12. Hubbell JH (1977) Photon mass attenuation and mass energy-absorption coefficients for H, C, N, O, Ar and seven mixtures from 0.1 keV to 20 MeV. Radiat Res 70:58–81

    Article  Google Scholar 

  13. Hubbell JH, Overbo I (1979) Relativistic atomic form factors and photon coherent scattering cross sections. J Phys Chem Ref Data 8:69–105

    Article  Google Scholar 

  14. Hubbell JH, Gimm HA, Overbo I (1980) Pair, triplet and total atomic cross sections (and mass attenuation coefficients) for 1 MeV–100 GeV photons in elements Z = 1 to 100. J Phys Chem Ref Data 9:1023–1147

    Article  Google Scholar 

  15. Hubbell JH (1982) Photon mass attenuation and energy absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat Isot 33:1269–1290

    Article  Google Scholar 

  16. Hubbell JH and Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV–20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632, National Institute of Standards and Technology, Gaithersburg

  17. Hussain Z, Kit LC (2008) Properties and spot welding behaviour of copper–alumina composites through ball milling and mechanical alloying. Mater Des 29:1311–1315

    Article  Google Scholar 

  18. Innocentini MDM, Pardo ARF, Salvini VR (2002) Prediction of permeability constants through physical properties of refractory castables. Ceramica 48(305):05–10

    Google Scholar 

  19. Marques LC, Simeão DS, Oliveira RM, Rocha WRD, Costa ECS, Coimbra MM, Portezan Filho O (2005) Application of the transmission of gamma rays in the study of corrugated tiles of different In: 2005 International Nuclear Atlantic Conference, INAC 2005 Santos, August 28–September 2. ISBN: 85-99141-01-5

  20. Matějíček J, Kolman B, Dubský J, Neufuss K, Hopkins N, Zwick J (2006) Alternative methods for determination of composition and porosity in abradable materials. Mater Charact 57:17–29

    Article  Google Scholar 

  21. Negahdari Z, Willert-Porada M, Pfeiffer C (2010) Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics. Mater Sci Eng A 527:3005–3009

    Article  Google Scholar 

  22. Nizovtsev MI, Stankus SV, Sterlyagov AN, Terekhov VI, Khairulin RA (2005) Experimental determination of the diffusitives of moisture in porous materials in capillary and sorption moistening. J Eng Phys Therm 78(1):68–74

    Article  Google Scholar 

  23. Ouellet S, Bussière B, Aubertin M, Benzaazoua M (2007) Microstructural evolution of cemented paste backfill: mercury intrusion porosimetry test results. Cem Concr Res 37:1654–1665

    Article  Google Scholar 

  24. Phogat VK, Aylmore LAG (1989) Evaluation of Soil structure by using computer assisted tomography. Soil Phys Hydrol 27:313–323

    Google Scholar 

  25. Pottker WE (2000) Medida da porosidade de materiais amorfos por transmissão de raios gama, Dissertation, Depto de Física, Universidade Estadual de Londrina

  26. Rocha MC, Silva LM, Appoloni CR, Portezan-Filho O, Lopes F, Melqu!ıades FL, Santos EA, Santos AO, Moreira AC, Otker WEP, Almeida E, Tannous CQ, Kuramoto R, Cavalcante FHM, Barbieri PF, Caleffi AF, Carbonari BT, Carbonari G (2001) Moisture profile measurements of concrete samples in vertical water flow by gamma ray transmission method. Radiat Phys Chem 61:567–569

    Article  Google Scholar 

  27. Rocha WRD (2005) Determinação de parâmetros geométricos estruturais de espumas cerâmicas industriais por transmissão de raios gama e microtomografia de raios X. MSc. Dissertation, Depto de Física, Universidade Estadual de Londrina

  28. Scofield JH (1973) Theoretical photoionization cross sections from 1 to 1500 keV, Lawrence Livermore National Laboratory Rep. UCRL-51326

  29. Wessels CB, Malan FS, Rypstra T (2011) A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur J Forest Res 130:881–893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Camargo Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, A.C., Appoloni, C.R. & Fernandes, C.P. Gamma ray transmission technique applied to porous phase characterization of low-porosity ceramic samples. Mater Struct 46, 629–637 (2013). https://doi.org/10.1617/s11527-012-9921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9921-3

Keywords

Navigation