Skip to main content

Advertisement

Log in

Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous ‘bioactivated’ ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.L. Hench, Bioceramics. J. Am. Ceram. Soc. 81(7), 1705–1728 (1998)

    Article  CAS  Google Scholar 

  2. E. Fidancevska, G. Ruseska, J. Bossert, Y. Lin, A.R. Boccaccini, Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater. Chem. Phys. 103, 95–100 (2007)

    Article  CAS  Google Scholar 

  3. X. Miao, Y. Hu, J. Liu, X. Huang, Hydroxyapatite coating on porous zirconia. Mater. Sci. Eng. C 27, 257–261 (2007)

    Article  CAS  Google Scholar 

  4. G. Willmann, Ceramic femoral head for total hip arthroplasty. Adv. Eng. Mater. 2(3), 114–121 (2000)

    Article  CAS  Google Scholar 

  5. S. Bose, J. Darsell, M. Kintner, H. Hosick, A. Bandyopadhyay, Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater. Sci. Eng. C 23, 479–486 (2003)

    Google Scholar 

  6. J. Pierri, E.B. Roslindo, R. Tomasi, E. Pallone, E. Rigo, Alumina/zirconia composite coated by biomimetic method. J. Non-Cryst. Solids 352, 5279–5283 (2006)

    Article  CAS  Google Scholar 

  7. F.F. Lange, K.T. Miller, Open cell, low-density ceramics fabricated from reticulated polymer substrates. Adv. Ceram. Mater. 2(4), 827 (1987)

    CAS  Google Scholar 

  8. C. Tuck, J.R.G. Evans, Porous ceramics prepared from protein foams. J.Mater. Sci. Lett. 18, 1003 (1999)

    Article  CAS  Google Scholar 

  9. S. Dhara, P. Bhargava, Simple direct casting route to ceramic foams. J. Am. Ceram. Soc. 86(10), 1645–1650 (2003)

    CAS  Google Scholar 

  10. A.O. Engin, A.C. Tas, Manufacture of macroporous calcium hydroxyapatite bioceramics. J. Eur. Ceram. Soc. 19, 2569 (1999)

    Article  CAS  Google Scholar 

  11. S.J. Yarram, C. Tasman, J. Gidley, M.J.R. Clare Sandy, J.P. Mansell, Epidermal growth factor and calcitriol synergistically induce osteoblast maturation. Mol Cell Endocrinol. 220, 9–20 (2004)

    Article  CAS  Google Scholar 

  12. S. Deville, J. Chevalier, G. Fantozzi et al., Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J. Eur. Ceram. Soc. 23, 2975–2982 (2003)

    Article  CAS  Google Scholar 

  13. A.R. Studart, U.T. Gonzenbach, E. Tervoort et al., Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89(6), 1771–1789 (2006)

    Article  CAS  Google Scholar 

  14. H.X. Peng, Z. Fan, J.R.G. Evans et al., Microstructure of ceramic foams. J. Eur. Ceram. Soc. 20, 807–813 (2000)

    Article  CAS  Google Scholar 

  15. K.A. Hing, Bioceramic bone graft substitutes: influence of porosity and chemistry. Int. J. Appl. Ceram. Technol. 2(3), 184–199 (2005)

    Article  CAS  Google Scholar 

  16. H.F. Hildebrand, N. Blanchemain, G. Mayer, F. Chai, M. Lefebvre, F. Boschin, Surface coatings for biological activation and functionalization of medical devices. Surf. Coat. Technol. 200, 6318 (2006)

    Article  CAS  Google Scholar 

  17. K. Yamashita, E. Yonehara, X.F. Ding, M. Nagai, T. Umegaki, M. Matsuda, Electrophoretic coating of multilayered apatite composite on alumina ceramics. J. Biomed. Mater. Res. 43(1), 46–53 (1998)

    Article  CAS  Google Scholar 

  18. C.F. Koch, S. Johnson, D. Kumar, M. Jelinek, D.B. Chrisey, A. Doraiswamy, C. Jin, R.J. Narayan, I.N. Mihailescu, Pulsed laser deposition of hydroxyapatite thin films. Mater. Sci. Eng. C 27, 484–494 (2007)

    Article  CAS  Google Scholar 

  19. K. Rezwana, Q.Z. Chena, J.J. Blakera, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413 (2006)

    Article  CAS  Google Scholar 

  20. H. Fischer, C. Niedhart, N. Kaltenborn, A. Prange, R. Marx, F.U. Niethard, R. Telle, Bioactivation of inert alumina ceramics by hydroxylation. Biomaterials 26, 6151–6157 (2005)

    Article  CAS  Google Scholar 

  21. T. Shirai, C. Ishizaki, K. Ishizaki, Effects of Manufacturing Processes on Hydration Ability of High Purity (-Al2O3 Powders. J. Jpn. Ceram. Soc. 114, 286–289 (2006)

    Article  CAS  Google Scholar 

  22. B. Su, X. He, S. Dhara, J.P. Mansell, Porous and Bioactive Alumina Ceramics for Bone Grafts and Tissue Engineering Scaffolds. Key Eng. Mater. 330–332, 975–978 (2007)

    Article  Google Scholar 

  23. L.L. Hench, J. Wilson, An Introduction to Bioceramics (World Scientific, London, U.K., 1993)

    Google Scholar 

  24. P. Colombo, J.R. Hellmann, D.L. Shelleman, Mechanical properties of silicon oxycarbide ceramic foams. J. Am. Ceram. Soc. 84(10), 2245 (2001)

    Article  CAS  Google Scholar 

  25. K. Anselme, Osteoblast adhesion on biomaterials. Biomaterials 21, 667 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. RP Shellis was thanked for his help to use FTIR instrument and useful discussions. Dr. S Dhara was thanked for initial discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Zhang, Y.Z., Mansell, J.P. et al. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. J Mater Sci: Mater Med 19, 2743–2749 (2008). https://doi.org/10.1007/s10856-008-3401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3401-x

Keywords

Navigation