Skip to main content
Log in

A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber

  • Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The accurate prediction of the mechanical properties that can be expected from timber from standing trees has many benefits for the growers and processors of trees. It includes support in tree breeding selection, tree processing allocation decisions, site and silvicultural research and processing production planning. A number of methods have been developed over the last few decades with significant interest in the recent past in especially acoustic methods, near-infrared spectroscopy methods and the Australian multi-property measurement system known as Silviscan. This paper reviews the current literature on new and existing non-destructive or limited destructive property measurement methods on standing trees that can assist with the prediction of, in most cases, the modulus of elasticity and modulus of rupture of timber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anagnost SE, Mark RE, Hanna RB (2000) Utilisation of soft-rot cavity orientation for the determination of microfibril angle. Wood Fiber Sci 32:81–87

    CAS  Google Scholar 

  • AS 2858 (2003) Australian Standard. Timber—softwood–visual stress-grading rules for structural purposes

  • Bailey IW, Vestal MR (1937) The orientation of cellulose in the secondary wall of tracheary cells. J Arnold Arbor 18:185–195

    Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  PubMed  CAS  Google Scholar 

  • Batchelor WJ, Conn AB, Parker IH (1997) Measuring the fibril angles of fibres using confocal microscopy. Appita 50:377–380

    CAS  Google Scholar 

  • Bier H (1985) Bending properties of structural timber from a 28-year-old stand of New Zealand Pinus radiata. N Z J For Sci 15(2):233–250

    Google Scholar 

  • Bier H (1986) Log quality and the strength and stiffness of structural timber. N Z J For Sci 16(2):176–186

    Google Scholar 

  • Brashaw BK, Bucur V, Divos F, Goncalves R, Lu J, Meder R, Pellerin RF, Potter S, Ross RJ, Wang X, Yin Y (2009) Nondestructive testing and evaluation of wood: a worldwide research update. For Prod J 59(3):7–14

    Google Scholar 

  • Brazier JD (1965) An assessment of the incidence and significance of spiral grain in young conifer trees. For Prod J 15:308–312

    Google Scholar 

  • Brisbin RL, Sonderman DL (1971) Tree grades for eastern white pine. USDA For Serv Res Pap NE-214

  • Bucur V (1983) An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics 1983:116–126

    Article  Google Scholar 

  • Bucur V (2003) Nondestructive characterization and imaging of wood. Springer, Heidelberg, p 354

  • Buksnowitz C, Müller U, Evans R, Teischinger A, Grabner M (2008) The potential of SilviScan’s X-ray diffractometry method for the rapid assessment of spiral grain in softwood, evaluated by goniometric measurements. Wood Sci Technol 42:95–102

    Article  CAS  Google Scholar 

  • Cave ID (1997a) Theory of X-ray measurement of microfibrill angle in wood. Part 1. The condition for reflection X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:143–152

    Article  CAS  Google Scholar 

  • Cave ID (1997b) Theory of X-ray measurement of microfibril angle in wood. Part 2. The diffraction diagram X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:225–234

    Article  CAS  Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For Prod J 44(5):43–49

    Google Scholar 

  • Chantre G, Rozenberg P (1997) Can drill resistance profiles (Resistograph) lead to within-profile and within-ring density parameters in Douglas-fir wood? In: Zhang SY, Gosselin R, Chauret G (eds) Proceedings of IUFRO Wood Quality Workshop: timber management toward wood quality and end-product value, Quebec, 18–22 August 1997, pp 41–47

  • Chazelas JL, Vergne A, Bucur V (1988) Analyse de la variation des propriétes physique et méchanique locales du bois autour des noeuds. (Wood local properties variation around knots). Actes du Colloque “Comportement Mécanique du Bois. GS Rhéologie du Bois, Bordeaux, pp 344–347

    Google Scholar 

  • Clark A, McAlister RH (1998) Visual tree grading systems for estimating lumber yields in young and mature southern pine. For Prod J 48(10):59–67

    Google Scholar 

  • Comino E, Socco V, Martinis R, Nicolotti G, Sambuelli L (2000) Ultrasonic tomography for wood decay diagnosis. In: Backhauss GF, Bader H, Idezak E (eds) Int Symp Plant Health in Urban Horticulture, Mitt. Bundesanst Land-Forstwirtschaft, Braunschweig, p 279

  • Cown DJ (1978) Comparison of the pilodyn and torsiometer methods for the rapid assessment of wood density in living trees. N Z J For Sci 8(3):384–391

    Google Scholar 

  • Cown DJ (2006) Wood quality in standing timber—evolution of assessment methods in plantations. In: Kurjatko S, Kúdela J, Lagaňa R (eds) Proceedings of the 5th IUFRO Symposium “Wood Structure and Properties ‘06”, Sliač—Sielnica, Slovakia, September 3–6, 2006. Organised jointly by the Faculty of Wood Sciences and Technology of the Technical University of Zvolen and the IUFRO Division 5 Forest Products 5.01.00

  • Cown DJ, Clement BC (1983) A wood densitometer using direct scanning with X-rays. Wood Sci Technol 17:91–99

    Article  Google Scholar 

  • Cown DJ, McConchie M, McConchie DL (1998) Developments in Pilodyn assessment of tree stems and logs. In: Proceedings of the Eleventh International Symposium on nondestructive testing of wood, September 9–11, Madison Wisconsin

  • Crickmay and Associates (2009) South African lumber index, November 2009

  • CSA O86-01 (2001) Canadian Standards Association. Engineering design in wood

  • Dinwoodie JM (2000) Timber: it’s nature and behaviour. E and FN Spon, London, New York, p 257

  • Divos F, Szegedi S, Raics P (1996) Local densitometry of wood by gamma back-scattering. Holz Roh Werkst 54:279–281

    Article  Google Scholar 

  • Donaldson LA (1991) The use of pit apertures as windows to measure microfibril angle in chemical pulp fibres. Wood Fiber Sci 23:290–295

    CAS  Google Scholar 

  • Donaldson LA (1998) Between tracheid variability of microfibril angles in radiata pine. In: BG Butterfield (ed) Proceedings of the IAWA/IUFRO International workshop on the significance of microfibril angle to wood quality, University of Canterbury Press, Canterbury, Westport, pp 206–224

  • Downes GM, Nyakuengama JG, Evans R, Northway R, Blakemore P, Dickson RL, Lausberg M (2002) Relationship between wood density, microfibril angle and stiffness in thinned and fertilized Pinus radiata. IAWA Journal 23(3):253–265

    Google Scholar 

  • Echols RM (1955) Linear relation of fibril angle to tracheid length, and genetic control of tracheid length in slash pine. Trop Wood 102:11–22

    Google Scholar 

  • EN 518 (1995) European Standard. Structural timber. grading. Requirements for visual strength grading standards

  • Evans R, Ilic J (2001) Rapid prediction of wood stiffness from microfibril angle and density. For Prod J 51(3):53–57

    Google Scholar 

  • Evans R, Hughes M, Menz D (1998) Microfibril angle variation by scanning X-ray diffractometry. Appita J 51:27–33

    Google Scholar 

  • Ghodgaonkar DK, Majid WMBWA, Husin HB (2000) Microwave nondestructive testing of Malaysian timber for grading applications. World Conference on Timber Engineering, Whistler Resort, British Columbia, Canada, July 31–August 3

  • Gindl W, Teischinger A (2001) The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties. J Near Infrared Spectrosc 9:255–261

    Article  CAS  Google Scholar 

  • Gindl W, Teischinger A (2002) The potential of Vis–and NIR spectroscopy for the nondestructive evaluation of grain-angle in wood. Wood Fiber Sci 34(4):651–656

    CAS  Google Scholar 

  • Glos P, Heimeshoff B (1982) Möglichkeiten und grenzen der festigkeitssortierung von brettlamellen für den holzleimbau. In: Ingenieurholzbau in Foschung und Praxis (Ehlbeck und Steck), Bruderverlag, Karlsruhe (In German)

  • Grabianowski M, Manley B, Walker JCF (2004) Impact of stocking and exposure on outerwood acoustic properties of Pinus Radiata in Eyrewell Forest. N Z J For

  • Grabianowski M, Manley B, Walker JCF (2006) Acoustic measurements on standing trees, logs and green lumber. Wood Sci Technol 40:205–216

    Article  CAS  Google Scholar 

  • Habermehl A, Ridder H-W, Seidl P (1999) Computerized tomographic systems as tools for diagnosing urban tree health. In: Lemattre M, Lemattre P, Lemaire F (ed) Proc Int Symp on Urban Tree Health. Acta Horticulture 496, 1999

  • Hallingbäck H (2010) Genetic improvement of shape stability in Norway spruce and Scots Pine sawn timber. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala

  • Hankinson RL (1921) Investigation of crushing strength of spruce at varying angles of grain. Air Force information circular No. 259. U. S. Air Service, USA

    Google Scholar 

  • Harris JM (1984) Non-destructive assessment of spiral grain in standing trees. N Z J For Sci 14(3):395–399

    Google Scholar 

  • Hauksson JB, Bergqvist G, Bergsten U, Sjöström M, Edlund U (2001) Prediction of basic wood properties for Norway spruce. Interpretation of near infrared spectroscopy data using partial least squares regression. Wood Sci Technol 35:474–485

    Article  Google Scholar 

  • Hoffmeyer P (1984) Om konstruktionstraes styrke och styrkesortiering. I Skovteknologi. Et historiskt og perspektivisk strejtog. Dansk Skovforening (In Danish)

  • Hoffmeyer P (1990) Failure of wood as influenced by moisture and duration of load. Doctoral thesis, State University of New York, College of Environmental Science and Forestry, Syracuse, New York

  • Hoffmeyer P, Pedersen JG (1995) Evaluation of density and strength of Norway spruce wood by near infrared spectroscopy. Holz Roh Werkst 53:165–170

    Article  Google Scholar 

  • Huang C-L (1995) Revealing fibril angle in wood sections by ultrasonic treatment. Wood Fiber Sci 27:49–54

    CAS  Google Scholar 

  • Huang C-L (2000) Predicting lumber stiffness of standing trees. In: Divos F (ed) Proceedings, 12th International symposium on non-destructive testing of wood, University of Western Hungary, Sopron, September 13–15, 2000, pp 173–180

  • Huang C-L, Kutscha NP, Leaf GJ, Megraw RA (1998) Comparison of microfibril angle measurement techniques. In: BG Butterfield (ed) Microfibril angle in wood. Proceedings of the IAWA/IUFRO International workshop on the significance of microfibril angle to wood quality, Westport, University of Canterbury Press, Canterbury, New Zealand, 1998, pp 177–205

  • Huang CL, Lindström H, Nakada R, Ralston J (2003) Cell wall structure and wood properties determined by acoustics–a selective review. Holz Roh Werkst 61:321–335

    Article  CAS  Google Scholar 

  • Ikeda K, Arima T (2000) Quality evaluation of standing trees by a stress-wave propagation method and its application II. Evaluation of sugi stands and application to production of sugi structural square timber. Mokuzai Gakkaishi. 46(3):189–196 (In Japanese)

    Google Scholar 

  • Ilic J (2003) Dynamic MOE of 55 species using small wood beams. Holz Roh Werkst 61:167–172

    Google Scholar 

  • Ishiguri F, Kawashima M, Iizuka K, Yokota S, Yoshizawa N (2006) Relationship between stress-wave velocity of standing tree and wood quality in 27-year-old Hinoki (Chamaecyparis obtusa Endl). J Soc Mat Sci, Japan 55(6):576–582

    Google Scholar 

  • Isik F, Li B (2003) Rapid assessment of wood density of live trees using the resistograph for selection in tree improvement programs. Can J For Res 33:2426–2435

    Article  Google Scholar 

  • Ivković M, Gapare WG, Abarquez A, Ilic J, Powell MB, Wu HX (2009) Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Sci Technol 43:237–257

    Article  Google Scholar 

  • James WL, Yen Y-H, King RJ (1985) A microwave method for measuring moisture content, density, and grain angle of wood. USDA Forest Products Laboratory, Research note FPL-0250

  • Jayne BA (1959) Indices of quality: vibrational properties of wood. For Prod J 9(11):413–416

    Google Scholar 

  • Johansson C-J (2003) Grading of timber with respect to mechanical properties. In: Thelandersson S, Larsen JL (eds) Timber engineering. Wiley, New Jersey

    Google Scholar 

  • Johansson C-J (1976) Tensile strength of glulam laminations. Chalmers University of Technology, Steel and timber structures, Internal report no S76:18 (In Swedish)

  • Johansson C-J, Brundin J, Gruber R (1992) Stress grading of Swedish and German timber. A comparison of machine stress grading and three visual grading systems. Swedish National Testing and Research Institute, SP Report 1998:38

  • Johansson C-J, Boström L, Bräuner L, Hoffmeyer P, Holmquist C, Solli KH (1998) Laminations for glued laminated timber—Establishment of strength classes for visual strength grades and machine settings for glulam laminations of Nordic origin. Swedish National Testing and Research Institute, SP Report 1998:38

  • Kaestner AP, Bååth LB (2005) Microwave polarimetry tomography of wood. IEEE Sensors J 5(2):209–215

    Article  Google Scholar 

  • Kelley SK, Rials TG, Groom LH, So C-H (2004a) Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung 58:252–260

    Article  CAS  Google Scholar 

  • Kelley SK, Rials TG, Snell R, Groom LH, Sluiter A (2004b) Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci Technol 38:257–276

    Article  CAS  Google Scholar 

  • Koch M, Hunsche S, Schuacher P, Nuss MC, Feldmann J, Fromm J (1998) THz-imaging: a new method for density mapping of wood. Wood Sci Technol 32:421–427

    CAS  Google Scholar 

  • Koizumi A, Ueda K (1986) Estimation of the mechanical properties of standing trees by bending tests I. Mokuzai Gakkashi 32(9):669–676 (In Japanese)

    Google Scholar 

  • Kromhout CP (1966) Tree-sampling jig for wood quality tests. For South Africa 6:107–112

    Google Scholar 

  • Lackner R, Foslie M (1988) Gran fra Vestlandet—Styrke och sortierung. Norw Instit Wood Technol, Report 74 (In Norwegian)

  • Launay J, Rozenberg P, Paques L, Dewitte J-M (2000) A new experimental device for rapid measurement of the trunk equivalent modulus of elasticity on standing trees. Ann For Sci 57:351–359

    Article  Google Scholar 

  • Launay J, Ivkovich M, Paques L, Bastien C, Higelin P, Rozenberg P (2002) Rapid measurement of trunk MOE on standing trees using rigidimeter. Ann For Sci 59:465–469

    Article  Google Scholar 

  • Leicester RH, Seath CA (1996) Application of microwave scanners for stress grading. In: 4th International Wood Engineering Conference, New Orleans, 2: 435–440

  • Lesnino G (1994) The laser-sandblasting method: a new method for the qualitative annual ring analysis of conifers. Wood Sci Technol 28:159–171

    Article  Google Scholar 

  • Lindström H, Harris P, Nakada R (2002) Methods for measuring stiffness of young trees. Holz Roh Werkst 60:165–174

    Article  Google Scholar 

  • Madsen B (1992) Structural behaviour of timber. Timber Engineering Ltd, North Vancouver

    Google Scholar 

  • Malan FS, Marais PG (1992) Some notes on the direct gamma ray densitometry of wood. Holzforschung 46(2):91–97

    Article  Google Scholar 

  • Martin P, Collet R, Barthelemy P, Roussy G (1987) Evaluation of wood characteristics: internal scanning of material by microwaves. Wood Sci Technol 21(4):361–371

    Article  Google Scholar 

  • Matheson AC, Dickson RL, Spencer DJ, Joe B, Ilic J (2002) Acoustic segregation of Pinus radiata logs according to stiffness. Ann For Sci 59:471–477

    Article  Google Scholar 

  • McDonald KA, Bendtsen BA (1986) Measuring localized slope of grain by electrical capacitance. For Prod J 36(10):75–78

    Google Scholar 

  • McLauchlan TA, Norton JA, Kusec DJ (1973) Slope-of-grain indicator. For Prod J 23(5):50–55

    Google Scholar 

  • Megraw R, Bremer D, Leaf G, Roers J (1999) Stiffness in loblolly pine as a function of ring position and height, and its relationship to microfibril angle and specific gravity. In: Third Workshop, Connection between silviculture and wood quality through modelling approaches and simulation software, IUFRO WP S5.01-04, La Londe-Les-Maures, France, Sept 5–12, 1999

  • Meylan BA (1967) Measurement of microfibril angle in Pinus radiata by X-ray diffraction. For Prod J 15:51–58

    Google Scholar 

  • Noskowiak AF (1968) Spiral grain patterns from increment cores. For Prod J 18:57–60

    Google Scholar 

  • Onoe M, Tsao JW, Tamada H, Nakamura H, Kogure J, Kawamura H, Yoshimatsu M (1984) Computed tomography for measuring the annual rings on a live tree. Nucl Instrum Methods Phys Res 221:213–220

    Article  Google Scholar 

  • Orosz I (1969) Modulus of elasticity and bending strength ratio as indicators of tensile strength of lumber. J Mater 4(4):842–864

    Google Scholar 

  • Page DH (1969) A method for determining the fibrillar angle in wood tracheids. J Microsc 90:137–143

    Article  Google Scholar 

  • Park JC (1989) Applications of the seesaw simulator and pruned log index to pruned resource evaluations–a case study. N Z J For Sci 19(1):68–82

    Google Scholar 

  • Park JC (1994) Evaluating pruned sawlog quality and assessing sawmill recoveries in New Zealand. For Prod J 44(4):43–52

    Google Scholar 

  • Pillow MY, Terrel BZ, Hiller CH (1953) Patterns of variation in fibril angles in loblolly pine. USDA FPL report D1935

  • Pleasants SW, Batchelor WJ, Parker IH (1997) Measuring the fibril angle of bleached fibres using micro raman spectroscopy. 51st Appita Annual General Conference, Melbourne. Australia 2:545–549

    Google Scholar 

  • Polge H (1966) Etablèssement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants. Ann Sci Forest XXIII, 1–206 (In French)

  • Polge H (1978) Fifteen years of wood radiation densitometry. Wood Sci Technol 12:187–196

    Article  Google Scholar 

  • Prestemon JP, Buongiorno J (2000) Determinants of tree quality and lumber value in natural uneven-aged southern pine stands. Can J For Res 30:211–219

    Article  Google Scholar 

  • Preston RD (1934) The organisation of the cell wall of the conifer tracheid. Philisophical Trans Royal Society, Series B 224:174–191

    Google Scholar 

  • Preston RD (1947) The fine structure of the wall of the conifer tracheid II. Optical properties of dissected walls in Pinus insignes. Proceedings of the Royal Society B134, 202–218

  • Preston RD (1948) The fine structure of the wall of the conifer tracheid: IV. Dimensional relationships. Biochim Biophys Acta 2:370–383

    Article  CAS  Google Scholar 

  • Rinn F, Scheingruber F-H, Schär E (1996) Resistograph and X-ray density charts of wood comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung 50(4):303–311

    Article  Google Scholar 

  • Samson M (1984) Measuring general slope of grain with the slope-of-grain indicator. For Prod J 34(7/8):27–32

    Google Scholar 

  • Samson M (1988) Transverse scanning for automatic detection of general slope of grain in lumber. For Prod J 38(7/8):33–38

    Google Scholar 

  • Samson M, Tremblay C, Langlais PA (1993) Measuring slope of grain by electrical capacitance at moisture contents above fiber saturation. For Prod J 43(2):58–60

    Google Scholar 

  • SANS 1783-2 (2005) South African National Standard. Sawn softwood timber. Part 2: Stress-graded structural timber and timber for frame wall construction

  • Schajer GS, Orhan FB (2006) Measurement of wood grain angle, moisture content and density using microwaves. Holz Roh Werkst 64:483–490

    Article  CAS  Google Scholar 

  • Schimleck RL, Evans R (2004) Estimation of Pinus radiata tracheid morphological characteristics by near infrared spectroscopy. Holzforschung 58:66–73

    Article  CAS  Google Scholar 

  • Schimleck LR, Evans R, Ilic J (2001) Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Can J For Res 31(10):1671–1675

    Google Scholar 

  • Schroeder JG, Campbel RA, Rodenbach RC (1968) Southern pine tree grades for yard and structural lumber. Research paper SE-40. Southern Research station, Asheville, p 15

    Google Scholar 

  • Senft J, Bendtsen BA (1985) Measuring microfibrillar angles using light microscopy. Wood Fibre Sci 17:564–567

    Google Scholar 

  • Smith DM (1954) Maximum moisture content method for determining specific gravity of small wood samples. Report 2014 U.S. Department of Agriculture

  • Smith WJ (1959) Tracheid length and micellar angle in Hoop pine (Araucaria cunninghamii Ait.)—their variation, relationships, and use as indicators in parent tree selection. Queensland Forest Service Research Notes No. 8, Brisbane, Australia

  • So C-L, Via BK, Groom LH, Schimleck LR, Shupe TF, Kelley SS, Rials TG (2004) Near infrared spectroscopy in the forest products industry. For Prod J 54(3):6–16

    Google Scholar 

  • Thumm A, Meder R (2001) Stiffness prediction of radiata pine clearwood test pieces using near infrared spectroscopy. J Near Infrared Spectrosc 9:117–122

    Article  CAS  Google Scholar 

  • Tiuri M, Jokela K, Heikkila S (1980) Microwave instrument for accurate moisture and density measurement of timber. J Microw Power 15:251–254

    Google Scholar 

  • Tognetti R, Raschi A, Beres C, Fenyvesi A, Ridder HW (1996) Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant Cell Environ 19:928–938

    Article  Google Scholar 

  • Tsoumis G (1991) Science and technology of wood. Structure, properties, utilization. Van Nostrand Reinhold, New York, p 494

    Google Scholar 

  • Uusitalo J (1997) Pre-harvest measurement of pine stands for sawing production planning. Acta Forestalia Fennica 259. p 56

  • Vafai A, Farshad M (1979) Modulus of elasticity of wood in standing trees. Wood Sci 12(2):93–97

    Google Scholar 

  • Verbelen JP, Stickens D (1995) In vivo determination of fibril orientation in plant cell walls with polarisation. J Microsc 177:1–6

    Article  Google Scholar 

  • Via BK, Shupe TF, Groom LH, Stine M, So C-L (2003) Multivariate modelling of density, strength and stiffness from near infrared spectra for mature, juvenile and pith wood of longleaf pine (Pinus palustris). J Near Infrared Spectrosc 11:365–378

    Article  CAS  Google Scholar 

  • Wang X, Ross RJ (2002) Nondestructive evaluation of green materials–recent research and development activities. In: Pellerin RF, Ross RJ (eds) Nondestructive evaluation of wood. Forest Products Society, Madison

    Google Scholar 

  • Wang X, Ross RJ, McClellan M, Barbour RJ, Erickson JR, Forsman JW, McGinnis GD (2000a) Strength and stiffness assessment of standing trees using a non-destructive stress wave technique. Research paper FPL-RP-585. U.S. Department of Agriculture, Forest Products Laboratory, Madison, p 11

    Google Scholar 

  • Wang X, Ross RJ, McClellan M (2000b) Strength and stiffness assessment of standing trees using a nondestructive stress wave technique. Research paper FPL-RP-600. U.S. Department of Agriculture, Forest Products Laboratory, Madison, p 9

    Google Scholar 

  • Wang X, Ross RJ, McClellan M, Barbour RJ, Erickson JR, Forsman JW, McGinnis GD (2001) Nondestructive evaluation of standing trees with a stress wave method. Wood Fiber Sci 33(4):522–533

    Google Scholar 

  • Wang S-Y, Lin C-J, Chiu C-M (2005) Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic wave testing. Wood Fiber Sci 37(2):192–200

    Google Scholar 

  • Wang X, Carter P, Ross RJ, Brashaw BK (2007) Acoustic assessment of wood quality of raw forest materials–a path to increased profitability. For Prod J 57(5):6–14

    Google Scholar 

  • Wardrop AB (1952) The low-angle scattering of X-rays by conifer tracheids. Text Res J 22:288–291

    Article  CAS  Google Scholar 

  • Wardrop AB, Dadswell HE (1950) The nature of reaction wood: II. The cell wall organisation of compression wood tracheids. Aus J Sci Res 3(1):1–13

    Google Scholar 

  • Wessels CB, Price CS, Turner P, Dell MP (2006) Integrating harvesting and sawmill operations using an optimized sawmill production planning system. In: Ackerman PA, Langin DW, Antonides MC (eds) Proceedings of the International Precision Forestry Symposium, Stellenbosch University, South Africa, 5–10 March 2006. ISBN 0-7972-1121-7

  • Wielinga B, Raymond CA, James R, Matheson AC (2009) Effect of green density values on Pinus Radiata stiffness estimation using a stress-wave technique. N Z J For Sci 39:71–79

    Article  Google Scholar 

  • Wilson TRC (1921) The effect of spiral grain on the strength of wood. J For 19:740–747

    Google Scholar 

  • Wimmer R (1995) Intra-annual cellular characteristics and their implications for modelling softwood density. Wood Fiber Sci 27(4):413–420

    CAS  Google Scholar 

  • Wu SY, Gorman TG, Wagner FG (2000) Effect of slope aspect and scanning intensity on the correlation between stress-wave speeds in Douglas-fir trees and lumber MOE. Presented at the 54th annual meeting of the Forest Products Society, South Lake Tahoe, Nevada, June 18–21, 2000

  • Yao J (1968) Modified mercury immersion method in determining specific gravity of small, irregular specimens. For Prod J 18(2):56–59

    Google Scholar 

  • Ye C, Sundstrom MO, Remes K (1994) Microscopic transmission ellipsometry-measurement of the fibre angle and relative phase retardation of single, intact wood pulp fibres. Appl Opt 33:6626–6637

    Article  PubMed  CAS  Google Scholar 

  • Zbonak A, Bush T (2006) Application of near-infrared spectroscopy in prediction of microfibril angle of 14-year-old Pinus patula. In: Kurjatko S, Kudela J, Lagana R (eds) Wood structure and properties ‘06. Arbora Publishers, Zvolen

    Google Scholar 

  • Zobel BJ, Van Buijtenen JP (1989) Wood variation. Its causes and control. Springer, Heidelberg, New York, p 363

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Wessels.

Additional information

Communicated by T. Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessels, C.B., Malan, F.S. & Rypstra, T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur J Forest Res 130, 881–893 (2011). https://doi.org/10.1007/s10342-011-0484-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0484-6

Keywords

Navigation