Skip to main content
Log in

Recent progress on inorganic composite electrolytes for all-solid-state lithium batteries

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

To address the low energy density and potential safety issues of modern lithium-ion batteries (LIBs), all-solid-state lithium batteries (ASSLBs) with solid-state electrolytes (SSEs) have emerged as a highly promising option. Among different SSEs, inorganic electrolytes (IEs) are the most probable to replace organic liquid electrolytes because of their relatively high lithium ionic conductivity and wide cell voltage window. Nevertheless, IEs encounter challenges such as elevated interfacial resistance, limited ionic conductivity at room temperature, and air instabilities. Different hybrid solid electrolytes, including organic–inorganic hybrid solid electrolytes (OIHSEs) and inorganic composite electrolytes (ICEs), have been developed to overcome these difficulties. While OIHSEs have been reviewed thoroughly, ICEs have been reviewed rarely, despite their crucial role in the advancement of ASSLBs. This review focuses on the synthesis methodologies, structures, compositions, and electrochemical performance of ICEs, providing a comprehensive overview of the present state-of-art ICEs, with constructive conclusions and perspectives for different ICEs on varied purposes. Ultimately, this review aims to shed light on potential research directions for the designing and building of practical ASSLBs with varying ICEs, thereby promoting the energy storage application of ASSLBs.

Graphical abstract

The recent advances in “Inorganic composite electrolytes for all-solid-state lithium batteries” were reviewed, with an emphasis on their compositions, synthesis techniques, electrochemical performances, and applications. Several research directions are offered to design and manufacture viable ICEs.

Highlights

  • This review provides a comprehensive overview of the present state-of-art inorganic composite electrolytes, with constructive conclusions and perspectives for different ICEs on varied purposes.

  • This review focuses on the synthesis methodologies, structures, compositions, and electrochemical performance of inorganic composite electrolytes in ASSLBs.

Discussion

The implementation of all-solid-state lithium batteries emerges as a pivotal remedy for addressing the safety concerns and energy density limitations inherent in conventional lithium-ion batteries. The decision between inorganic electrolytes and hybrid solid electrolytes, specifically the relatively unexplored inorganic composite electrolytes, necessitates thorough deliberation and underscores the importance of interdisciplinary collaboration. The utilization of theoretical computations and the development of durable and environmentally friendly energy solutions are imperative for augmenting the efficacy and security of all-solid-state batteries, while also promoting the adoption of sustainable energy technologies in diverse societies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Reproduced with permission from Ref. [31]. Copyright © 2019 Wiley–VCH.

Figure 24
Figure 25
Figure 26

Similar content being viewed by others

Data availability

Not applicable.

Code availability

No code was written or used.

References

  1. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 1–16 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  2. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1142/9789814317665_0024

    Article  ADS  CAS  PubMed  Google Scholar 

  3. B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power. Sources 195(9), 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048

    Article  ADS  CAS  Google Scholar 

  4. L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8(11), 1702657 (2018). https://doi.org/10.1002/aenm.201702657

    Article  CAS  Google Scholar 

  5. O.V. Yarmolenko, A.V. Yudina, K.G. Khatmullina, Nanocomposite polymer electrolytes for the lithium power sources (a review). Russ. J. Electrochem. 54, 325–343 (2018). https://doi.org/10.1134/S1023193518040092

    Article  CAS  Google Scholar 

  6. J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li, Y. Huang, Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9(46), 1902767 (2019). https://doi.org/10.1002/aenm.201902767

    Article  CAS  Google Scholar 

  7. M. Jia et al., Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv. Funct. Mater. 31(27), 2101736 (2021). https://doi.org/10.1002/adfm.202101736

    Article  CAS  Google Scholar 

  8. R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horizons. 3(6), 487–516 (2016). https://doi.org/10.1039/C6MH00218H

    Article  CAS  Google Scholar 

  9. M.V. Reddy, C.M. Julien, A. Mauger, K. Zaghib, Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review. Nanomaterials 10(8), 1606 (2020). https://doi.org/10.3390/nano10081606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. W.L. Huang, N. Zhao, Z.J. Bi, C. Shi, X.X. Guo, L.Z. Fan, C.W. Nan, Can we find solution to eliminate Li penetration through solid garnet electrolytes? Mater. Today Nano. 10, 100075 (2020). https://doi.org/10.1016/j.mtnano.2020.100075

    Article  Google Scholar 

  11. C. Chen, K. Wang, H. He, E. Hanc, M. Kotobuki, L. Lu, Processing and properties of garnet-type Li7La3Zr2O12 ceramic electrolytes. Small 19(12), 2205550 (2023). https://doi.org/10.1002/smll.202205550

    Article  CAS  Google Scholar 

  12. S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11(2), 2000802 (2021). https://doi.org/10.1002/aenm.202000802

    Article  CAS  Google Scholar 

  13. C. Wang et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120(10), 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427

    Article  CAS  PubMed  Google Scholar 

  14. Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu, N.J. Dudney, J. Kiggans, K. Hong, A.J. Rondinone, C. Liang, Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Electrochem. Soc. 135(3), 975–978 (2013). https://doi.org/10.1021/ja3110895

    Article  CAS  Google Scholar 

  15. G. Özsin, K.B. Dermenci, S. Turan, Thermokinetic and thermodynamics of Pechini derived conditions. J. Therm. Anal. Calorim. 146, 1405–1420 (2021). https://doi.org/10.1007/s10973-020-10462-y

    Article  CAS  Google Scholar 

  16. J.C. Bachman et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2015). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  17. Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y. He, F. Kang, B. Li, Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power. Sources 389, 120–134 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.019

    Article  ADS  CAS  Google Scholar 

  18. M. Rosen, M. Finsterbusch, O. Guillon, D. Fattakhova-Rohlfing, Free standing dual phase cathode tapes–scalable fabrication and microstructure optimization of garnet-based ceramic cathodes. J. Mater. Chem. A. 10(5), 2320–2326 (2021). https://doi.org/10.1039/d1ta07194g

    Article  CAS  Google Scholar 

  19. M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Reports. 136, 27–46 (2019). https://doi.org/10.1016/j.mser.2018.10.004

    Article  Google Scholar 

  20. K. Chen, M. Huang, Y. Shen, Y. Lin, C.W. Nan, Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochim. Acta 80, 133–139 (2012). https://doi.org/10.1016/j.electacta.2012.06.115

    Article  CAS  Google Scholar 

  21. P. Yao et al., Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 7, 522 (2019). https://doi.org/10.3389/fchem.2019.00522

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3

    Article  ADS  CAS  PubMed  Google Scholar 

  23. E. Rangasamy, G. Sahu, J.K. Keum, A.J. Rondinone, N.J. Dudney, C. Liang, A high conductivity oxide-sulfide composite lithium superionic conductor. J. Mater. Chem. A. 2, 4111–4116 (2014). https://doi.org/10.1039/c3ta15223e

    Article  CAS  Google Scholar 

  24. J. Liang, J. Luo, Q. Sun, X. Yang, R. Li, X. Sun, Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. 21, 308–334 (2019). https://doi.org/10.1016/j.ensm.2019.06.021

    Article  Google Scholar 

  25. N. Meng, X. Zhu, F. Lian, Particles in composite polymer electrolyte for solid-state lithium batteries: a review. Particuology. 60, 14–36 (2021). https://doi.org/10.1016/j.partic.2021.04.002

    Article  CAS  Google Scholar 

  26. Z.D. Hood, H. Wang, Y. Li, A.S. Pandian, M.P. Paranthaman, C. Liang, The “filler effect”: a study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ionics J. 283, 75–80 (2015). https://doi.org/10.1016/j.ssi.2015.10.014

    Article  CAS  Google Scholar 

  27. J. Zhu et al., Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte. Am. Inst. Phys. 109(1), 101904 (2016). https://doi.org/10.1063/1.4962437

    Article  CAS  Google Scholar 

  28. E. Zhao, F. Ma, Y. Guo, Y. Jin, Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv. 6(95), 92579–92585 (2016). https://doi.org/10.1039/c6ra19415j

    Article  ADS  CAS  Google Scholar 

  29. Y. Tian et al., Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 14, 49–57 (2018). https://doi.org/10.1016/j.ensm.2018.02.015

    Article  Google Scholar 

  30. F. Han, J. Yue, X. Zhu, C. Wang, Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8(18), 1703644 (2018). https://doi.org/10.1002/aenm.201703644

    Article  CAS  Google Scholar 

  31. F. Mo et al., Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv. Energy Mater. 9(40), 1902123 (2019). https://doi.org/10.1002/aenm.201902123

    Article  CAS  Google Scholar 

  32. Q. Zhang, J.P. Mwizerwa, H. Wan, L. Cai, X. Xu, X. Yao, Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. J. Mater. Chem. A. 5(45), 23919–23925 (2017). https://doi.org/10.1039/c7ta07972a

    Article  CAS  Google Scholar 

  33. Q. Zhang, Z. Ding, G. Liu, H. Wan, J.P. Mwizerwa, J. Wu, X. Yao, Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 23, 168–180 (2019). https://doi.org/10.1016/j.ensm.2019.05.015

    Article  Google Scholar 

  34. L. Cai, Q. Zhang, J.P. Mwizerwa, H. Wan, X. Yang, X. Xu, X. Yao, Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS Appl. Mater. Interfaces 10(12), 10053–10063 (2018). https://doi.org/10.1021/acsami.7b18798

    Article  CAS  PubMed  Google Scholar 

  35. S.Y. Jung, R. Rajagopal, K.S. Ryu, Synthesis and electrochemical performance of (100–x)Li7P3S11-xLi2OHBr composite solid electrolyte for all-solid-state lithium batteries. J. Energy Chem. 47, 307–316 (2020). https://doi.org/10.1016/j.jechem.2020.02.018

    Article  Google Scholar 

  36. J. Hüttl et al., Ultra-low LPS/LLZO interfacial resistance–towards stable hybrid solid-state batteries with Li-metal anodes. Energy Storage Mater. 40, 259–267 (2021). https://doi.org/10.1016/j.ensm.2021.05.020

    Article  Google Scholar 

  37. Z. Lai, W. Feng, X. Dong, X. Zhou, Y. Wang, Y. Xia, Lithium dendrites suppressed by low temperature in-situ anti-perovskite coated garnet solid-state electrolyte. J. Power. Sources 500, 229982 (2021). https://doi.org/10.1016/j.jpowsour.2021.229982

    Article  CAS  Google Scholar 

  38. Y.S. Park, J.M. Lee, E.J. Yi, J.W. Moon, H. Hwang, All-solid-state lithium-ion batteries with oxide/sulfide composite electrolytes. Materials (Basel) 14(8), 1998 (2021). https://doi.org/10.3390/ma14081998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. C. Zou et al., Ionic conductivity and interfacial stability of Li6PS5Cl–Li6.5La3Zr1.5Ta0.5O12 composite electrolyte. J. Solid State Electrochem. 25(10–11), 2513–2525 (2021). https://doi.org/10.1007/s10008-021-05004-x

    Article  CAS  Google Scholar 

  40. Z. Deng et al., Bilayer halide electrolytes for all-inorganic solid-state lithium-metal batteries with excellent interfacial compatibility. ACS Appl. Energy Mater. 14(43), 48619–48626 (2022). https://doi.org/10.1021/acsami.2c12444

    Article  CAS  Google Scholar 

  41. S.K. Jung, H. Gwon, G. Yoon, L.J. Miara, V. Lacivita, J.S. Kim, Pliable lithium superionic conductor for all-solid-state batteries. ACS Energy Lett. 6(5), 2006–2015 (2021). https://doi.org/10.1021/acsenergylett.1c00545

    Article  CAS  Google Scholar 

  42. R. Xu et al., Room temperature halide-eutectic solid electrolytes with viscous feature and ultrahigh ionic conductivity. Adv. Sci. 9(35), 2204633 (2022). https://doi.org/10.1002/advs.202204633

    Article  CAS  Google Scholar 

  43. A.H. Dao et al., Improvement of the ionic conductivity on new substituted borohydride argyrodites. Solid State Ion. 339, 114987 (2019). https://doi.org/10.1016/j.ssi.2019.05.022

    Article  CAS  Google Scholar 

  44. H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami, Mechanochemical synthesis of new amorphous materials of 60Li2S·40SiS2 with high lithium ion conductivity. J. Am. Ceram. Soc. 82(5), 1352–1354 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01923.x

    Article  CAS  Google Scholar 

  45. M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami, New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses. Solid State Ion. 154, 635–640 (2002). https://doi.org/10.1016/S0167-2738(02)00509-X

    Article  Google Scholar 

  46. J. Zhu et al., A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew. Chemie Int. Ed. 60(7), 3781–3790 (2021). https://doi.org/10.1002/anie.202014265

    Article  CAS  Google Scholar 

  47. J. Gao, J. Zhu, X. Li, J. Li, X. Guo, H. Li, W. Zhou, Rational design of mixed electronic-ionic conducting Ti-doping Li7La3Zr2O12 for lithium dendrites suppression. Adv. Funct. Mater. 31(2), 2001918 (2021). https://doi.org/10.1002/adfm.202001918

    Article  CAS  Google Scholar 

  48. K. Chen, M. Huang, Y. Shen, Y. Lin, C.W. Nan, Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder. Solid State Ion. 235, 8–13 (2013). https://doi.org/10.1016/j.ssi.2013.01.007

    Article  CAS  Google Scholar 

  49. Z. Zhang, L. Zhang, C. Yu, X. Yan, B. Xu, L. Wang, Lithium halide coating as an effective intergrain engineering for garnet-type solid electrolytes avoiding high temperature sintering. Electrochim. Acta 289, 254–263 (2018). https://doi.org/10.1016/j.electacta.2018.08.079

    Article  CAS  Google Scholar 

  50. H. Duan et al., Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew. Chemie Int. Ed. 132(29), 12167–12173 (2020). https://doi.org/10.1002/ange.202003177

    Article  ADS  Google Scholar 

  51. W. Kou et al., Highly conductive thin lamellar Li7La3Zr2O12/Li3InCl6 composite inorganic solid electrolyte for high-performance all-solid-state lithium battery. J. Memb. Sci. 687, 122080 (2023). https://doi.org/10.1016/j.memsci.2023.122080

    Article  CAS  Google Scholar 

  52. Y. Gao et al., Amorphous dual-layer coating: enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte. Adv. Funct. Mater. 31(15), 2009692 (2021). https://doi.org/10.1002/adfm.202009692

    Article  ADS  CAS  Google Scholar 

  53. H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin, Z. Li, J.B. Goodenough, Li3N-modified garnet electrolyte for all-solid-state Li-metal batteries operated at 40 °C. Nano Lett. 18(11), 7414–7418 (2018). https://doi.org/10.1021/acs.nanolett.8b03902

    Article  ADS  CAS  PubMed  Google Scholar 

  54. H. Nagata, J. Akimoto, Hybrid oxide solid electrolyte of crystalline garnet and highly deformable glass for all-solid-state lithium-ion batteries. J. Power. Sources 539, 231596 (2022). https://doi.org/10.1016/j.jpowsour.2022.231596

    Article  CAS  Google Scholar 

  55. Y. Niu et al., Constructing stable Li-solid electrolyte interphase to achieve dendrite-free solid-state battery: a nano-interlayer/Li pre-reduction strategy. Nano Res. 15(8), 7180–7189 (2022). https://doi.org/10.1007/s12274-022-4362-y

    Article  ADS  CAS  Google Scholar 

  56. S.G. Ling, J.Y. Peng, Q. Yang, J.L. Qiu, J.Z. Lu, H. Li, Enhanced ionic conductivity in LAGP/LATP composite electrolyte. Chin. Phys. B 27(3), 038201 (2018). https://doi.org/10.1088/1674-1056/27/3/038201

    Article  ADS  CAS  Google Scholar 

  57. H. Onishi, S. Takai, T. Yabutsuka, T. Yao, Synthesis and electrochemical properties of LATP-LLTO lithium ion conductive composites. Electrochemistry 84(12), 967–970 (2016). https://doi.org/10.5796/electrochemistry.84.967

    Article  CAS  Google Scholar 

  58. F. Song, T. Yamamoto, T. Yabutsuka, T. Yao, S. Takai, Synthesis and characterization of LAGP-based lithium ion-conductive composites with an LLTO additive. J. Alloys Compd. 853, 157089 (2021). https://doi.org/10.1016/j.jallcom.2020.157089

    Article  CAS  Google Scholar 

  59. F. Song, T. Yamamoto, T. Yabutsuka, T. Yao, S. Takai, Synthesis and characterization of lithium-ion conductive LATP-LaPO4 composites using La2O3 nano-powder. Materials (Basel). 14(13), 3502 (2021). https://doi.org/10.3390/ma14133502

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. C. Seidl, Investigation of the compatibility of different solid electrolytes for solid-state batteries. Manag. Chem. Technol. (2020)

  61. S.Y. Jung, R. Rajagopal, K.S. Ryu, Synthesis and electrochemical performance of (100–x)Li7P3S11-xLi3SI composite solid electrolyte for all-solid-state lithium batteries. J. Ind. Eng. Chem. 95, 350–356 (2021). https://doi.org/10.1016/j.jiec.2021.01.009

    Article  CAS  Google Scholar 

  62. M. Park, R. Rajagopal, K.S. Ryu, Electrochemical performance of the mixed solid electrolyte (100–x)Li3SI-xLi6PS5Cl (x = 0, 10, 20, and 30) for all-solid-state lithium batteries. J. Power. Sources 501, 230031 (2021). https://doi.org/10.1016/j.jpowsour.2021.230031

    Article  CAS  Google Scholar 

  63. B.R. Shin, Y.J. Nam, D.Y. Oh, D.H. Kim, J.W. Kim, Y.S. Jung, Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014). https://doi.org/10.1016/j.electacta.2014.08.139

    Article  CAS  Google Scholar 

  64. S. Ujiie, A. Hayashi, M. Tatsumisago, Structure, ionic conductivity and electrochemical stability of Li2S-P2S5–LiI glass and glass–ceramic electrolytes. Solid State Ion. 211, 42–45 (2012). https://doi.org/10.1016/j.ssi.2012.01.017

    Article  CAS  Google Scholar 

  65. S. Ujiie, A. Hayashi, M. Tatsumisago, Preparation and ionic conductivity of (100–x)(0.8Li2S0,2P2S5)·xLiI glass-ceramic electrolytes. J. Solid State Electrochem. 17, 675–680 (2013). https://doi.org/10.1007/s10008-012-1900-7

    Article  CAS  Google Scholar 

  66. S. Ujiie, A. Hayashi, M. Tatsumisago, Preparation and electrochemical characterization of (100–x)(0.7Li2S0.3P2S5)·xLiBr glass-ceramic electrolytes. Mater. Renew. Sustain. Energy. 3, 3–18 (2014). https://doi.org/10.1007/s40243-013-0018-x

    Article  Google Scholar 

  67. E. Rangasamy et al., An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137(4), 1384–1387 (2015). https://doi.org/10.1021/ja508723m

    Article  CAS  PubMed  Google Scholar 

  68. N.H.H. Phuc, T. Yamamoto, H. Muto, A. Matsuda, Fast synthesis of Li2S–P2S5–LiI solid electrolytes precursors. Inorg. Chem. Front. 4(10), 1660–1664 (2017). https://doi.org/10.1039/C7QI00353F

    Article  CAS  Google Scholar 

  69. N.H.H. Phuc, E. Hirahara, K. Morikawa, H. Muto, A. Matsuda, One-pot liquid phase synthesis of (100–x)Li3PS4–xLiI solid electrolytes. J. Power. Sources 365(10), 7–11 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.065

    Article  ADS  CAS  Google Scholar 

  70. S.J. Choi et al., Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries. J. Electrochem. Soc. 165(5), 957–962 (2018). https://doi.org/10.1149/2.0981805jes

    Article  CAS  Google Scholar 

  71. T. Yamamoto, N.H.H. Phuc, H. Muto, A. Matsuda, Preparation of Li7P2S8I solid electrolyte and its application in all-solid-state lithium-ion batteries with graphite anode. Electron. Mater. Lett. 15, 409–414 (2019). https://doi.org/10.1007/s13391-019-00133-y

    Article  ADS  CAS  Google Scholar 

  72. S. Choi, S. Lee, J. Yu, C.H. Doh, Y.C. Ha, Slurry-processed glass-ceramic Li2S-P2S5-LiI electrolyte for all-solid-state Li-ion batteries. ECS Trans. 77(1), 65–70 (2017). https://doi.org/10.1149/07701.0065ecst

    Article  CAS  Google Scholar 

  73. L. Wu, G. Liu, H. Wan, W. Weng, X. Yao, Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. J. Power. Sources 491, 229565 (2021). https://doi.org/10.1016/j.jpowsour.2021.229565

    Article  CAS  Google Scholar 

  74. S. Yang et al., Studies on the inhibition of lithium dendrite formation in sulfide solid electrolytes doped with LiX (X = Br, I). Solid State Ion. 377, 115869 (2022). https://doi.org/10.1016/j.ssi.2022.115869

    Article  CAS  Google Scholar 

  75. H. Zhang, Z. Yu, J. Cheng, H. Chen, X. Huang, B. Tian, Halide/sulfide composite solid-state electrolyte for Li-anode based all-solid-state batteries. Chinese Chem. Lett. 34, 108228 (2023). https://doi.org/10.1016/j.cclet.2023.108228

    Article  CAS  Google Scholar 

  76. A. Yamauchi, A. Sakuda, A. Hayashi, M. Tatsumisago, Preparation and ionic conductivities of (100–x(0.75Li2S·0.25P2S5·xLiBH4 glass electrolytes. J. Power. Sources 244, 707–710 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.001

    Article  CAS  Google Scholar 

  77. A. Sakuda, A. Yamauchi, S. Yubuchi, N. Kitamura, Y. Idemoto, A. Hayashi, M. Tatsumisago, Mechanochemically prepared Li2S−P2S5−LiBH4 solid electrolytes with an argyrodite structure. ACS Omega 3(5), 5453–5458 (2018). https://doi.org/10.1021/acsomega.8b00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. A. Unemoto, H. Wu, T.J. Udovic, M. Matsuo, T. Ikeshoji, S. Orimo, Fast lithium-ionic conduction in a new complex hydride-sulphide crystalline phase. Chem. Commun. 52(3), 564–566 (2016). https://doi.org/10.1039/c5cc07793a

    Article  CAS  Google Scholar 

  79. Y. Hu et al., Lithium ionic conduction in composites of Li(BH4)0.75I0.25 and amorphous 0.75Li2S.0.25P2S5 for battery applications. Electrochim. Acta 278, 332–339 (2018). https://doi.org/10.1016/j.electacta.2018.05.041

    Article  CAS  Google Scholar 

  80. T. Zhang et al., Fast lithium ionic conductivity in complex hydride-sulfide electrolytes by double anions substitution. Small Methods. 5(8), 2100609 (2021). https://doi.org/10.1002/smtd.202100609

    Article  CAS  Google Scholar 

  81. A. El Kharbachi et al., Pseudo-ternary LiBH4-LiCl-P2S5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteries. Phys. Chem. Chem. Phys. 22(25), 13872–13879 (2020). https://doi.org/10.1039/d0cp01334j

    Article  CAS  PubMed  Google Scholar 

  82. D. Sveinbjörnsson et al., Effect of heat treatment on the lithium ion conduction of the LiBH4−LiI solid solution. J. Phys. Chem. C 117(7), 3249–3257 (2013). https://doi.org/10.1021/jp310050g

    Article  CAS  Google Scholar 

  83. V. Gulino, M. Brighi, E.M. Dematteis, F. Murgia, C. Nervi, R. Černý, M. Baricco, Phase stability and fast ion conductivity in the hexagonal LiBH4-LiBr-LiCl solid solution. Chem. Mater. 31(14), 5133–5144 (2019). https://doi.org/10.1021/acs.chemmater.9b01035

    Article  CAS  Google Scholar 

  84. C.H Kühl, N. Straße, Free sintering or hot pressing? A decision support. Diamond Tool Consult. 1–8 (2013).

  85. J.S Konstanty, in: Applications of Powder Metallurgy to Cutting Tools, ed. I. Chang, Y. Zhao (Woodhead Publishing, 2013), pp. 555–585.

  86. S. Ohta, C. Yada, T. Saito, H. Iba, LLZ oxide and LPS sulfide composite solid electrolyte for lithium ion battery. ECS Meet. Abstr. 230(5), 857–857 (2016). https://doi.org/10.1149/ma2016-02/5/857

    Article  Google Scholar 

  87. K. Takada, Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013). https://doi.org/10.1016/j.actamat.2012.10.034

    Article  ADS  CAS  Google Scholar 

  88. G. Goglio, A. Ndayishimiye, C. Elissalde, C. Randall, in: Cold Sintering and Hydrothermal Sintering, ed. M. Pomeroy (Elsevier, 2021), pp. 11–326

  89. S. Cao et al., Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review. J. Korean Ceram. Soc. 56(2), 111–129 (2019). https://doi.org/10.4191/kcers.2019.56.2.01

    Article  CAS  Google Scholar 

  90. A. Hayashi, K. Minami, M. Tatsumisago, High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries. J. Non Cryst. Solids 355(37–42), 1919–1923 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.12.020

    Article  ADS  CAS  Google Scholar 

  91. D. Safanama, D. Damiano, R.P. Rao, Lithium conducting solid electrolyte Li1+xAlxGe2−x(PO4)3 membrane for aqueous lithium air battery. Solid State Ion. 262, 211–215 (2013). https://doi.org/10.1016/j.ssi.2013.11.031

    Article  CAS  Google Scholar 

  92. D. Safanama, S. Adams, High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes. J. Power. Sources 340, 294–301 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.076

    Article  ADS  CAS  Google Scholar 

  93. M. Tatsumisago, A. Hayashi, Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries. Int. J. Appl. Glas. Sci. 5(3), 226–235 (2014). https://doi.org/10.1111/ijag.12084

    Article  CAS  Google Scholar 

  94. S. Ito, M. Nakakita, Y. Aihara, T. Uehara, N. Machida, A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J. Power. Sources 271, 342–345 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.024

    Article  ADS  CAS  Google Scholar 

  95. T. Thompson et al., Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett. 2(2), 462–468 (2017). https://doi.org/10.1021/acsenergylett.6b00593

    Article  CAS  Google Scholar 

  96. R. Xu et al., Artificial interphases for highly stable lithium metal anode. Matter. 1(2), 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016

    Article  Google Scholar 

  97. C. Wang et al., Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries. Nano Energy 50, 393–400 (2018). https://doi.org/10.1016/j.nanoen.2018.05.062

    Article  CAS  Google Scholar 

  98. H. Huo et al., Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13(1), 127–134 (2020). https://doi.org/10.1039/c9ee01903k

    Article  MathSciNet  CAS  Google Scholar 

  99. J. Qian et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6(1), 6362 (2015). https://doi.org/10.1038/ncomms7362

    Article  ADS  CAS  PubMed  Google Scholar 

  100. J. Zheng, B. Perry, Y. Wu, Antiperovskite superionic conductors: a critical review. ACS Mater. Au. 1(2), 92–106 (2021). https://doi.org/10.1021/acsmaterialsau.1c00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, J. Janek, Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015). https://doi.org/10.1016/j.ssi.2015.06.001

    Article  CAS  Google Scholar 

  102. R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46(41), 7778–7781 (2007). https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  103. R. Mercier, J.P. Malugani, B. Fahys, G. Robert, Superionic conduction in Li2S-P2S5-Lil-glasses. Solid State Ion. 5, 663–666 (1981). https://doi.org/10.1016/0167-2738(81)90341-6

    Article  CAS  Google Scholar 

  104. X. Li, J. Liang, X. Yang, K.R. Adair, C. Wang, F. Zhao, X. Sun, Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13(5), 1429–1461 (2020). https://doi.org/10.1039/c9ee03828k

    Article  CAS  Google Scholar 

  105. Y. Pang, Y. Liu, J. Yang, S. Zheng, C. Wang, Hydrides for solid-state batteries: a review. Mater. Today Nano. 18, 100194 (2022). https://doi.org/10.1016/j.mtnano.2022.100194

    Article  CAS  Google Scholar 

  106. J. Monnier, J. Zhang, F. Cuevas, M. Latroche, Hydrides compounds for electrochemical applications. Curr. Opin. Electrochem. 32, 100921 (2022). https://doi.org/10.1016/j.coelec.2021.100921

    Article  CAS  Google Scholar 

  107. C. Liu, Z.Y. Wen, K. Rui, High ion conductivity in garnet-type F-doped Li7La3Zr2O12. J. Inorg. Mater. 30(9), 995–1001 (2015). https://doi.org/10.15541/jim20150163

    Article  ADS  CAS  Google Scholar 

  108. Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

    Article  CAS  PubMed  Google Scholar 

  109. X. Ma, Y. Xu, Enhanced critical current density of garnet Li7La3Zr2O12 solid electrolyte by incorporation of LiBr. Electrochim. Acta 409, 139986 (2022). https://doi.org/10.1016/j.electacta.2022.139986

    Article  CAS  Google Scholar 

  110. C. Wang et al., Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 76, 105015 (2020). https://doi.org/10.1016/j.nanoen.2020.105015

    Article  CAS  Google Scholar 

  111. X. Li et al., Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12(9), 2665–2671 (2019). https://doi.org/10.1039/c9ee02311a

    Article  CAS  Google Scholar 

  112. D. Blanchard et al., Nanoconfined LiBH4 as a fast lithium ion conductor. Adv. Funct. Mater. 25(2), 184–192 (2015). https://doi.org/10.1002/adfm.201402538

    Article  CAS  Google Scholar 

  113. Y.S. Choi, Y.S. Lee, K.H. Oh, Y.W. Cho, Interface-enhanced Li ion conduction in a LiBH4-SiO2 solid electrolyte. Phys. Chem. Chem. Phys. 18(32), 22540–22547 (2016). https://doi.org/10.1039/c6cp03563a

    Article  CAS  PubMed  Google Scholar 

  114. M. Matsuo, S. Orimo, Lithium fast-ionic conduction in complex hydrides: review and prospects. Adv. Energy Mater. 1(2), 161–172 (2011). https://doi.org/10.1002/aenm.201000012

    Article  CAS  Google Scholar 

  115. R. Mohtadi, S. Orimo, The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2(3), 16091 (2016). https://doi.org/10.1038/natrevmats.2016.91

    Article  ADS  Google Scholar 

  116. F. Han et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4(3), 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z

    Article  ADS  CAS  Google Scholar 

  117. J.A. Dawson, T. Famprikis, K.E. Johnston, Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. J. Mater. Chem. A. 9(35), 18746–18772 (2021). https://doi.org/10.1039/d1ta03680g

    Article  CAS  Google Scholar 

  118. Y. Zhao, L.L. Daemen, Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134(36), 15042–15047 (2012). https://doi.org/10.1021/ja305709z

    Article  CAS  PubMed  Google Scholar 

  119. S. Li et al., Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br). Solid State Ion. 284, 14–19 (2016). https://doi.org/10.1016/j.ssi.2015.11.027

    Article  ADS  CAS  Google Scholar 

  120. A. Emly, E. Kioupakis, A. Van der Ven, Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater. 25(23), 4663–4670 (2013). https://doi.org/10.1021/cm4016222

    Article  CAS  Google Scholar 

  121. X. Li et al., Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chemie Int. Ed. 131(46), 16579–16584 (2019). https://doi.org/10.1002/ange.201909805

    Article  ADS  Google Scholar 

  122. Y. Nikodimos, W.N. Su, B.J. Hwang, Halide solid-state electrolytes: stability and application for high voltage all-solid-state Li batteries. Adv. Energy Mater. 13(3), 2202854 (2022). https://doi.org/10.1002/aenm.202202854

    Article  CAS  Google Scholar 

  123. D. Park et al., Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 12(31), 34806–34814 (2020). https://doi.org/10.1021/acsami.0c07003

    Article  CAS  PubMed  Google Scholar 

  124. J. Lou et al., Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. J. Power. Sources 448, 227440 (2020). https://doi.org/10.1016/j.jpowsour.2019.227440

    Article  CAS  Google Scholar 

  125. Y. Jin, P.J. McGinn, Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power. Sources 196(20), 8683–8687 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065

    Article  ADS  CAS  Google Scholar 

  126. J. Saienga, S.W. Martin, The comparative structure, properties, and ionic conductivity of LiI+Li2S+GeS2 glasses doped with Ga2S3 and La2S3. J. Non Cryst. Solids 354(14), 1475–1486 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.058

    Article  ADS  CAS  Google Scholar 

  127. P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ion. 180(14–16), 911–916 (2009). https://doi.org/10.1016/j.ssi.2009.03.022

    Article  CAS  Google Scholar 

  128. T. Lapp, S. Skaarup, A. Hooper, Ionic conductivity of pure and doped Li3N. Solid State Ion. 11(2), 97–103 (1983). https://doi.org/10.1016/0167-2738(83)90045-0

    Article  CAS  Google Scholar 

  129. W. Li et al., Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3(10), 1524–1530 (2010). https://doi.org/10.1039/c0ee00052c

    Article  CAS  Google Scholar 

  130. K. Park, J.B. Goodenough, Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 7(19), 1700732 (2017). https://doi.org/10.1002/aenm.201700732

    Article  CAS  Google Scholar 

  131. Y. Li et al., Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 4(1), 97–104 (2018). https://doi.org/10.1021/acscentsci.7b00480

    Article  CAS  PubMed  Google Scholar 

  132. F. Yonemoto, A. Nishimura, M. Motoyama, N. Tsuchimine, S. Kobayashi, Y. Iriyama, Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J. Power. Sources 343, 207–215 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.009

    Article  ADS  CAS  Google Scholar 

  133. M. Kotobuki, Y. Suzuki, H. Munakata, K. Kanamura, Y. Sato, K. Yamamoto, T. Yoshida, Effect of sol composition on solid electrode/solid electrolyte interface for all-solid-state lithium ion battery. Electrochim. Acta 56(3), 1023–1029 (2011). https://doi.org/10.1016/j.electacta.2010.11.008

    Article  CAS  Google Scholar 

  134. M. Kotobuki, M. Koishi, Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. Ceram. Int. 41(7), 8562–8567 (2015). https://doi.org/10.1016/j.ceramint.2015.03.064

    Article  CAS  Google Scholar 

  135. C.R. Mariappan, C. Yada, F. Rosciano, B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J. Power. Sources 196(15), 6456–6464 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.065

    Article  ADS  CAS  Google Scholar 

  136. C.J. Leo, B.V.R. Chowdari, G.V.S. Rao, Lithium conducting glass ceramic with Nasicon structure. Mater. Res. Bull. 37(8), 1419–1430 (2002). https://doi.org/10.1016/S0025-5408(02)00793-6

    Article  CAS  Google Scholar 

  137. X. Xu, Z. Wen, X. Wu, X. Yang, Z. Gu, Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 90(9), 2802–2806 (2007). https://doi.org/10.1111/j.1551-2916.2007.01827.x

    Article  CAS  Google Scholar 

  138. M. Hou, F. Liang, K. Chen, Y. Dai, D. Xue, Challenges and perspectives of NASICON-type solid electrolytes for all solid-state lithium batteries. Nanotechnology 31(13), 132003 (2020). https://doi.org/10.1088/1361-6528/ab5be7

    Article  ADS  CAS  PubMed  Google Scholar 

  139. J.K. Feng, B.G. Yan, J.C. Liu, M.O. Lai, L. Li, All solid state lithium ion rechargeable batteries using NASICON structured electrolyte. Mater. Technol. 28(5), 276–279 (2013). https://doi.org/10.1179/1753555713Y.0000000085

    Article  ADS  CAS  Google Scholar 

  140. Z. Wang, H. Xu, M. Xuan, G. Shao, From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+ transport in cubic solid lithium halogen-chalcogenides. J. Mater. Chem. A. 6(1), 73–83 (2018). https://doi.org/10.1039/C7TA08698A

    Article  CAS  Google Scholar 

  141. S. Lorger, R. Usiskin, J. Maier, Transport and charge carrier chemistry in lithium oxide. J. Electrochem. Soc. 166(10), A2215–A2220 (2019). https://doi.org/10.1149/2.1121910jes

    Article  CAS  Google Scholar 

  142. M. Chen, S. Adams, High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2014). https://doi.org/10.1007/s10008-014-2654-1

    Article  CAS  Google Scholar 

  143. H.J. Deiseroth, S.T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser, Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chemie Int. Ed. 47(4), 755–758 (2008). https://doi.org/10.1002/anie.200703900

    Article  CAS  Google Scholar 

  144. W.D. Jung et al., Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. ACS Appl. Mater. Interfaces 20(4), 2303–2309 (2020). https://doi.org/10.1021/acs.nanolett.9b04597

    Article  MathSciNet  CAS  Google Scholar 

  145. C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker, Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid-state batteries. Electrochim. Acta 215, 93–99 (2016). https://doi.org/10.1016/j.electacta.2016.08.081

    Article  CAS  Google Scholar 

  146. S. Yubuchi, M. Uematsu, M. Deguchi, A. Hayashi, M. Tatsumisago, Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent. ACS Appl. Energy Mater. 1(8), 3622–3629 (2018). https://doi.org/10.1021/acsaem.8b00280

    Article  CAS  Google Scholar 

  147. A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago, Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5. Electrochem. Solid-State Lett. 6(3), 47–49 (2003). https://doi.org/10.1149/1.1540792

    Article  CAS  Google Scholar 

  148. N. Kamaya et al., A lithium superionic conductor. Nat. Mater. 10(9), 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7(2), 627–631 (2014). https://doi.org/10.1039/c3ee41655k

    Article  CAS  Google Scholar 

  150. R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148(7), 477–479 (2001). https://doi.org/10.1149/1.1379028

    Article  Google Scholar 

  151. D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  152. Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24(1), 15–17 (2012). https://doi.org/10.1021/cm203303y

    Article  CAS  Google Scholar 

  153. Y. Tao, S. Chen, D. Liu, G. Peng, X. Yao, X. Xu, Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J. Electrochem. Soc. 163(2), 96–101 (2015). https://doi.org/10.1149/2.0311602jes

    Article  CAS  Google Scholar 

  154. Y. Haven, The ionic conductivity of Li-halide crystals. Recl. des Trav. Chim. des Pays-Bas. 69(12), 1471–1489 (1950). https://doi.org/10.1002/recl.19500691203

    Article  CAS  Google Scholar 

  155. B.J.H. Jackson, D.A. Young, Ionic conduction in pure and doped single-crystalline lithium iodide. J. Phys. Chem. Solids 30(8), 1973–1976 (1969). https://doi.org/10.1016/0022-3697(69)90174-7

    Article  ADS  CAS  Google Scholar 

  156. C.R. Schlaikjer, C.C. Liang, Ionic conduction in calcium doped polycrystalline lithium iodide. J. Electrochem. Soc. 118(9), 1447–1450 (1971). https://doi.org/10.1149/1.2408351

    Article  ADS  CAS  Google Scholar 

  157. M.L.B. Rao, US Pat., 3455742, 15 Jul. (1969)

  158. C.C. Liang, J. Epstein, G.H. Boyle, A high-voltage, solid-state battery system: II fabrication of thin-film cells. J. Electrochem. Soc. 116(10), 1452–1454 (1969). https://doi.org/10.1149/1.2411560

    Article  ADS  CAS  Google Scholar 

  159. C.C. Liang, The self-discharge mechanism of the Li/Lil/Agl solid electrolyte cell. J. Electrochem. Soc. 118(6), 894–895 (1971). https://doi.org/10.1149/1.2408213

    Article  ADS  CAS  Google Scholar 

  160. J.P. Malugani, G. Robert, Preparation and electrical properties of the 0.37Li2S-0.18P2S5–0.45LiI glass. Solid State Ion. 1(5–6), 519–523 (1980). https://doi.org/10.1016/0167-2738(80)90048-X

    Article  CAS  Google Scholar 

  161. Y. Wang et al., Formation mechanism of Li7P3S11 solid electrolytes through liquid phase synthesis. Chem. Mater. 30(3), 990–997 (2018). https://doi.org/10.1021/acs.chemmater.7b04842

    Article  ADS  CAS  Google Scholar 

  162. Z. Wang et al., Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte. Chem. Eng. J. 393, 124706 (2020). https://doi.org/10.1016/j.cej.2020.124706

    Article  CAS  Google Scholar 

  163. M. Takahashi et al., Investigation of the suppression of dendritic lithium growth with a lithium-iodide-containing solid electrolyte. Chem. Mater. 33(13), 4907–4914 (2021). https://doi.org/10.1021/acs.chemmater.1c00270

    Article  CAS  Google Scholar 

  164. C. Wang, J. Liang, J.T. Kim, X. Sun, X. Sun, Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv. 8(36), eadc9516 (2022). https://doi.org/10.1126/sciadv.adc9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6(8), 1–9 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  166. M. Suyama, A. Kato, A. Sakuda, A. Hayashi, M. Tatsumisago, Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim. Acta 286, 158–162 (2018). https://doi.org/10.1016/j.electacta.2018.07.227

    Article  CAS  Google Scholar 

  167. Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13(10), 961–969 (2014). https://doi.org/10.1038/NMAT4041

    Article  ADS  CAS  PubMed  Google Scholar 

  168. L. Ma, M.S. Kim, L.A. Archer, Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29(10), 4181–4189 (2017). https://doi.org/10.1021/acs.chemmater.6b03687

    Article  CAS  Google Scholar 

  169. S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018). https://doi.org/10.1016/j.ssi.2017.07.005

    Article  CAS  Google Scholar 

  170. L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl. Mater. Interfaces 7(3), 2073–2081 (2015). https://doi.org/10.1021/am508111r

    Article  CAS  PubMed  Google Scholar 

  171. A. Sharafi, C.G. Haslam, R.D. Kerns, J. Wolfenstine, J. Sakamoto, Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A. 5(40), 21491–21504 (2017). https://doi.org/10.1039/C7TA06790A

    Article  CAS  Google Scholar 

  172. L. Porz et al., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7(20), 1701003 (2017). https://doi.org/10.1002/aenm.201701003

    Article  CAS  Google Scholar 

  173. S. Yu et al., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28(1), 197–206 (2016). https://doi.org/10.1021/acs.chemmater.5b03854

    Article  CAS  Google Scholar 

  174. O. Pecher et al., Atomistic characterisation of Li+ mobility and conductivity in Li7-xPS6-xIx argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy. Chem. Eur. J. 16(28), 8347–8354 (2010). https://doi.org/10.1002/chem.201000501

    Article  CAS  PubMed  Google Scholar 

  175. R. Miyazaki et al., Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4. Solid State Ion. 192(1), 143–147 (2011). https://doi.org/10.1016/j.ssi.2010.05.017

    Article  CAS  Google Scholar 

  176. Z. Liu et al., Lithium migration pathways at the composite interface of LiBH4 and two-dimensional MoS2 enabling superior ionic conductivity at room temperature. Phys. Chem. Chem. Phys. 22(7), 4096–4105 (2020). https://doi.org/10.1039/c9cp06090a

    Article  ADS  CAS  PubMed  Google Scholar 

  177. A. El Kharbachi et al., MgH2–CoO: a conversion-type composite electrode for LiBH4-based all-solid-state lithium ion batteries. RSC Adv. 8(41), 23468–23474 (2018). https://doi.org/10.1039/c8ra03340d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  178. H. Benzidi, M. Lakhal, A. Benyoussef, M. Hamedoun, M. Loulidi, A. El-kenz, O. Mounkachi, First principle study of strain effect on structural and dehydrogenation properties of complex hydride LiBH4. Int. J. Hydrogen Energy 42(30), 19481–19486 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.068

    Article  CAS  Google Scholar 

  179. K. Kisu, S. Kim, H. Oguchi, N. Toyama, S. Orimo, Interfacial stability between LiBH4-based complex hydride solid electrolytes and Li metal anode for all-solid-state Li batteries. J. Power. Sources 436, 226821 (2019). https://doi.org/10.1016/j.jpowsour.2019.226821

    Article  CAS  Google Scholar 

  180. X. Bai, Y. Duan, W. Zhuang, R. Yang, J. Wang, Research progress in Li-argyrodite-based solid-state electrolytes. J. Mater. Chem. A. 8(48), 25663–25686 (2020). https://doi.org/10.1039/D0TA08472G

    Article  CAS  Google Scholar 

  181. T.J. Udovic et al., Sodium superionic conduction in Na2B12H12. Chem. Commun. 50(28), 3750–3752 (2014). https://doi.org/10.1039/c3cc49805k

    Article  CAS  Google Scholar 

  182. Z. Yao, S. Kim, K. Michel, Y. Zhang, M. Aykol, C. Wolverton, Stability and conductivity of cation- and anion-substituted LiBH4-based solid-state electrolytes. Phys. Rev. Mater. 2(6), 065402 (2018). https://doi.org/10.1103/PhysRevMaterials.2.065402

    Article  CAS  Google Scholar 

  183. M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, H. Takamura, Lithium superionic conduction in lithium borohydride accompanied by structural transition Lithium superionic conduction in lithium borohydride accompanied. Appl. Phys. Lett. 91(22), 224103 (2007). https://doi.org/10.1063/1.2817934

    Article  ADS  CAS  Google Scholar 

  184. T.J. Udovic et al., Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26(45), 7622–7626 (2014). https://doi.org/10.1002/adma.201403157

    Article  CAS  PubMed  Google Scholar 

  185. M. Matsuo, H. Takamura, H. Maekawa, H.W. Li, S. Orimo, Stabilization of lithium superionic conduction phase and enhancement of conductivity of LiBH4 by LiCl addition. Appl. Phys. Lett. 94(8), 084103 (2009). https://doi.org/10.1063/1.3088857

    Article  ADS  CAS  Google Scholar 

  186. L.M. Arnbjerg et al., Structure and dynamics for LiBH4-LiCl solid solutions. Chem. Mater. 21(24), 5772–5782 (2009). https://doi.org/10.1021/cm902013k

    Article  CAS  Google Scholar 

  187. L.H. Rude et al., Iodide substitution in lithium borohydride, LiBH4–LiI. J. Alloys Compd. 509(33), 8299–8305 (2011). https://doi.org/10.1016/j.jallcom.2011.05.031

    Article  CAS  Google Scholar 

  188. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 131(3), 894–895 (2009). https://doi.org/10.1021/ja807392k

    Article  CAS  PubMed  Google Scholar 

  189. J. Cuan, Y. Zhou, T. Zhou et al., Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Adv. Mater. 31, 1803533 (2019). https://doi.org/10.1002/adma.201803533

    Article  CAS  Google Scholar 

  190. T. Ikeshoji, Y. Ando, M. Otani, E. Tsuchida, S. Takagi, M. Matsuo, S. Orimo, Biased interface between solid ion conductor LiBH4 and lithium metal: a first principles molecular dynamics study. Appl. Phys. Lett. 103(13), 133903 (2013). https://doi.org/10.1063/1.4823503

    Article  ADS  CAS  Google Scholar 

  191. F. Mo et al., Stable three-dimensional metal hydride anodes for solid-state lithium storage. Energy Storage Mater. 18, 423–428 (2019). https://doi.org/10.1016/j.ensm.2019.01.014

    Article  Google Scholar 

  192. L.M. Riegger, R. Schlem, J. Sann, W.G. Zeier, J. Janek, Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chemie Int. Ed. 60(12), 6718–6723 (2021). https://doi.org/10.1002/ange.202015238

    Article  CAS  Google Scholar 

  193. M. Tatsumisago, Y. Akamatsu, T. Minami, Ionic conductivity of ZrF4-BaF2-MX (M = Li, Na; X= F, Cl) glasses. Solid State Ion. 31(1), 41–47 (1988). https://doi.org/10.1016/0167-2738(88)90286-X

    Article  CAS  Google Scholar 

  194. A. El Kharbachi, E. Pinatel, I. Nuta, M. Baricco, A thermodynamic assessment of LiBH4. Calphad 39, 80–90 (2012). https://doi.org/10.1016/j.calphad.2012.08.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Key R&D Program of China (No. 2018YFE0181300), the National Natural Science Foundation of China (21905035), Liaoning Revitalization Talents Program (XLYC1907093), and the Liaoning Natural Science Foundation (20180510043).

Author information

Authors and Affiliations

Authors

Contributions

MA: Conceptualization, Formal analysis, Writing—original draft; CSD: Editing; YZ: Conceptualization; YY: Conceptualization, Writing—reviewing and editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Yimin Zhu or Yan Yang.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

We follow the ethical code of conduct by the MRS Energy and Sustainability.

Consent to participate

All authors consent to participate in this research article.

Consent for publication

All authors gave their consent for publication in the journal MRS Energy and Sustainability.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abitonze, M., Diko, C.S., Zhu, Y. et al. Recent progress on inorganic composite electrolytes for all-solid-state lithium batteries. MRS Energy & Sustainability (2024). https://doi.org/10.1557/s43581-023-00076-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43581-023-00076-w

Keywords

Navigation