U.S. Geological Survey. Mineral Commodity Summaries 2021. (2021).
A. Mayyas, D. Steward, M. Mann, The case for recycling: Overview and challenges in the material supply chain for automotive Li-ion batteries. Sustain. Mater. Technol. 19, 1–26 (2019)
Google Scholar
G. Harper et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019)
CAS
Article
Google Scholar
Minerals Yearbook - Volume 1: Metals and Minerals. National Minerals Information Center. (2019).
H.S. Hirsh et al., Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2001274, 1–8 (2020)
Google Scholar
J. Tarascon, Na-ion versus Li-ion batteries: Complementarity rather than competitiveness. Joule 4, 1616–1620 (2020)
Article
Google Scholar
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: Present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)
CAS
Article
Google Scholar
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)
CAS
Article
Google Scholar
D.I. Iermakova, R. Dugas, M.R. Palacín, A. Ponrouch, On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes. J. Electrochem. Soc. 162, A7060–A7066 (2015)
CAS
Article
Google Scholar
J. Song, B. Xiao, Y. Lin, K. Xu, X. Li, Interphases in sodium-ion batteries. Adv. Energy Mater. 8, 1–7 (2018)
Google Scholar
E. Matios, H. Wang, C. Wang, W. Li, Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A review. Ind. Eng. Chem. Res. 58, 9758–9780 (2019)
CAS
Article
Google Scholar
R.S. Carmichael, Practical Handbook of Physical Properties of Rocks and Minerals (CRC Press, Boca Raton, 1988)
Google Scholar
Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895–5900 (2015)
CAS
Article
Google Scholar
U. Bordeaux, T. Cedex, T. Cedex, The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials. J. Alloys Compd. 188, 1–6 (1992)
Article
Google Scholar
Society T. E, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 3–8 (1997)
Article
Google Scholar
C. Masquelier, L. Croguennec, Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013)
CAS
Article
Google Scholar
G.H. Newman, L.P. Klemann, Ambient temperature cycling of an Na–TiS2 cell. J. Electrochem. Soc. 127, 2097–2099 (1980)
CAS
Article
Google Scholar
C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B 99, 81–85 (1980)
CAS
Article
Google Scholar
C. Fouassier, G. Matejka, J.M. Reau, P. Hagenmuller, Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1) Le système cobalt-oxygène-sodium. J. Solid State Chem. 6, 532–537 (1973)
CAS
Article
Google Scholar
C. Fouassier, C. Delmas, P. Hagenmuller, Evolution structurale et proprietes physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x ≤ 1). Mater. Res. Bull. 10, 443–449 (1975)
CAS
Article
Google Scholar
J.J. Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller, Comportement electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980)
CAS
Article
Google Scholar
C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3–4, 165–169 (1981)
Article
Google Scholar
Komaba, S. & Kubota, K. Chapter 1. Layered NaMO2 for the Positive Electrode. Na-ion Batteries 1–46 (2020).
Z. Lu, J.R. Dahn, In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 148, A1225 (2001)
CAS
Article
Google Scholar
K. Du et al., Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016)
CAS
Article
Google Scholar
P. Rozier et al., Electrochemistry communications anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochem. commun. 53, 29–32 (2015)
CAS
Article
Google Scholar
K. Nam, K.Y. Chung, Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-Ion batteries. ACS Appl. Mater. Interface 8, 4–11 (2016). https://doi.org/10.1021/acsami.6b04014
CAS
Article
Google Scholar
K. Trad et al., NaMnFe2(PO4)3 alluaudite phase: Synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries. Chem. Mater. 2, 5554–5562 (2010)
Article
CAS
Google Scholar
A. Daidouh et al., Structural and electrical study of the alluaudites. Soild State Sci. 4, 541–548 (2002)
CAS
Article
Google Scholar
P. Serras, L. Croguennec, Vanadyl-type defects in Tavorite-like NaVPO4F: from the average long range structure to local environments. Mater. Chem. A 5, 25044–25055 (2017)
Article
Google Scholar
A.A. Tsirlin et al., Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5. Phys. Rev. B 84, 1–16 (2011)
Google Scholar
N.V.O.F. Po, W. Massa, O.V. Yakubovich, O.V. Dimitrova, Crystal structure of a new sodium vanadyl (IV) fluoride phosphate Na3(V2O2F[PO4]2). Solid State Sci. 4, 495–501 (2002)
Article
Google Scholar
J.L. Meins, G. Courbion, Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 277, 260–277 (1999)
Article
CAS
Google Scholar
J.B. Goodenough, H.Y. Hong, J.A.R.G. Kafalas, Mater. Res. Bull. 5, 77843 (1976)
Google Scholar
A. Manthiram, J.B. Goodenough, Lithium insertion into Fe2(SO4)3 frameworks. J. Power Sources 26, 403–408 (1989)
CAS
Article
Google Scholar
C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, A nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mater. Res. Bull. 22, 631–639 (1987)
CAS
Article
Google Scholar
O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, K. Hashimoto, Reversible photoinduced magnetization. J. Electrochem. Soc. 144, L11–L13 (1997)
CAS
Article
Google Scholar
W.R. Entley, C.R. Treadway, G.S. Girolami, Molecular magnets constructed from cyanometalate building blocks. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 273, 153–166 (1995)
Article
Google Scholar
S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, M. Verdaguer, A room-temperature organometallic magnet based on prussian blue. Nature 378, 701–703 (1995)
CAS
Article
Google Scholar
J.P. Ziegler, B.M. Howard, Applications of reversible electrodeposition electrochromic devices. Sol. Energy Mater. Sol. Cells 39, 317–331 (1995)
CAS
Article
Google Scholar
D. Ellis, M. Eckhoff, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of prussian blue. J. Phys. Chem. 96, 1225–1231 (1981)
Article
Google Scholar
K.P. Rajan, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 2. Kinetics of the reduction of ruthenium purple and Prussian blue. J. Phys. Chem. 86, 4361–4368 (1982)
CAS
Article
Google Scholar
N. Imanishi et al., Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J. Power Sources 79, 215–219 (1999)
CAS
Article
Google Scholar
A. Eftekhari, Potassium secondary cell based on Prussian blue cathode. J. Power Sources 126, 221–228 (2004)
CAS
Article
Google Scholar
Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012)
CAS
Article
Google Scholar
L. Wang et al., A superior low-cost cathode for a Na-ion battery. Angew. Chemie 125, 2018–2021 (2013)
Article
Google Scholar
R. Fong, U. von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990)
CAS
Article
Google Scholar
T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993)
CAS
Article
Google Scholar
K. Sawai, T. Ohzuku, T. Hirai, Natural graphite as an anode for rechargeable nonaqueous cells. Chem. Express 5, 18 (1990)
Google Scholar
Y. Liu, B.V. Merinov, W.A. Goddard, Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. U.S.A. 113, 3735–3739 (2016)
CAS
Article
Google Scholar
W. Wan, H. Wang, Study on the first-principles calculations of graphite intercalated by alkali metal (Li, Na, K). Int. J. Electrochem. Sci. 10, 3177–3184 (2015)
CAS
Google Scholar
K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, H. Iba, First-principles study of alkali metal-graphite intercalation compounds. J. Power Sources 243, 585–587 (2013)
CAS
Article
Google Scholar
Y. Okamoto, Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J. Phys. Chem. C 118, 16–19 (2014)
CAS
Article
Google Scholar
H. Moriwake, A. Kuwabara, C.A.J. Fisher, Y. Ikuhara, Why is sodium-intercalated graphite unstable? RSC Adv. 7, 36550–36554 (2017)
CAS
Article
Google Scholar
K. Westman et al., Diglyme based electrolytes for sodium-ion batteries. ACS Appl Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00360
Article
Google Scholar
B. Jache, P. Adelhelm, Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chemie 126, 10333–10337 (2014)
Article
Google Scholar
D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271 (2000)
CAS
Article
Google Scholar
X. Dou et al., Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019)
CAS
Article
Google Scholar
Rios, C. D. M. S., Beda, A., Simonin, L. & Ghimbeu, C. M. Chapter 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism. in Na-ion Batteries 101–146 (2020).
H.S. Hirsh et al., Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater. 42, 78–87 (2021)
Article
Google Scholar
B. Sayahpour et al., Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery. Adv. Energy Mater. 12, 2103196 (2022)
CAS
Article
Google Scholar
Gabaudan, V., Sougrati, M. T., Stievano, L. & Monconduit, L. Chapter 4. Non-carbonaceous Negative Electrodes in Sodium Batteries. in Na-ion Batteries 147–204 (2020).
S. Wang, X.-B. Zhang, N-Doped C@Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: high performance and new reaction mechanism. Adv. Mater. 31, 1805432 (2019)
Article
CAS
Google Scholar
C.C. Yang, D.M. Zhang, L. Du, Q. Jiang, Hollow Ni–NiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium-ion batteries with an ultra-long cycle life. J. Mater. Chem. A 6, 12663–12671 (2018)
CAS
Article
Google Scholar
Y. Fang, B.Y. Guan, D. Luan, X.W. Lou, Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chemie 131, 7821–7825 (2019)
Article
Google Scholar
Y. Fang, X. Yu, X.W. Lou, Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew. Chemie 131, 7826–7830 (2019)
Article
Google Scholar
D.M. Zhang, J.H. Jia, C.C. Yang, Q. Jiang, Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater. 24, 439–449 (2020)
Article
Google Scholar
Y. Fang, X.-Y. Yu, X.W.D. Lou, Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties. Angew. Chemie 130, 10007–10011 (2018)
Article
Google Scholar
Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25, 214–220 (2015)
CAS
Article
Google Scholar
Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27, 6702–6707 (2015)
CAS
Article
Google Scholar
X. Zhou, L. Yu, X.-Y. Yu, X.W.D. Lou, Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater. 6, 1601177 (2016)
Article
CAS
Google Scholar
X. Li, J. Ni, S.V. Savilov, L. Li, materials based on antimony and bismuth for sodium Storage. Chem. A Eur. J. 24, 13719–13727 (2018)
CAS
Article
Google Scholar
Y. Kim et al., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045–3049 (2013)
CAS
Article
Google Scholar
X. Fan et al., Superior stable self-healing SnP3 anode for sodium-ion batteries. Adv. Energy Mater. 5, 1500174 (2015)
Article
CAS
Google Scholar
K.H. Seng, Z.P. Guo, Z.X. Chen, H.K. Liu, SnSb/graphene composite as anode materials for lithium ion batteries. Adv. Sci. Lett. 4, 18–23 (2011)
CAS
Article
Google Scholar
L. Baggetto, E. Allcorn, R.R. Unocic, A. Manthiram, G.M. Veith, Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 1, 11163 (2013)
CAS
Article
Google Scholar
Y. Sun et al., Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)
Article
CAS
Google Scholar
P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M.R. Palacín, Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011)
CAS
Article
Google Scholar
A. Rudola, K. Saravanan, S. Devaraj, H. Gong, P. Balaya, Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 49, 7451 (2013)
CAS
Article
Google Scholar
Y. Liu et al., WS2 nanowires as a high-performance anode for sodium-ion batteries. Chem. A Eur. J. 21, 11878–11884 (2015)
CAS
Article
Google Scholar
P. Gao, L. Wang, Y. Zhang, Y. Huang, K. Liu, Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 9, 11296–11301 (2015)
CAS
Article
Google Scholar
Y.X. Yu, Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 120, 5288–5296 (2016)
CAS
Article
Google Scholar
Z. Liu, T. Song, U. Paik, Sb-based electrode materials for rechargeable batteries. J. Mater. Chem. A 6, 8159–8193 (2018)
CAS
Article
Google Scholar
M. Lao et al., Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1–23 (2017)
Article
CAS
Google Scholar
K. Song et al., Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 17, 1–26 (2021)
Google Scholar
H. Ying, W.Q. Han, Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 7 (2017)
Article
CAS
Google Scholar
W.T. Jing, C.C. Yang, Q. Jiang, Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. J. Mater. Chem. A 8, 2913–2933 (2020)
CAS
Article
Google Scholar
H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012)
CAS
Article
Google Scholar
L. Li et al., Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018)
CAS
Article
Google Scholar
Shacklette, L., Toth, J. & Elsenbaumer, R. Conjugated polymer as substrate for the plating of alkal metal in a nonaqueous secondary battery. vol. 44 617–621 (1987)
L. Shacklette, T.R. Jow, L. Townsend, Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc. 135, 2669–2674 (1988)
CAS
Article
Google Scholar
Shacklette, L., Toth, J. E. & Elsenbaumer, R. L. Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary battery. EP patent application US 1985–749325. (1985).
Shishikura, T. & Takeuchi, M. Secondary batteries. Patent Application 86109020.7. 1–26 (1987)
Shishikura, T., Takeuchi, M., Murakoshi, Y., Konuma, H. & Kameyama, M. Secondary cobalt sodium oxide-sodium alloy battery. EP patent application. (1989).
Barker, J. et al. Commercialization of Faradion’s High Energy Faradion Density Na-ion Battery Technology. in 3rd International Conference on Sodium Batteries (2016).
A. Rudola et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9, 8279–8302 (2021)
CAS
Article
Google Scholar
Barker, J. & Heap, R. Doped Nickelate Compounds. vol. US 9774035 (2017).
A. Ponrouch et al., Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 6, 2361 (2013)
CAS
Article
Google Scholar
T. Broux et al., High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-ion batteries. Small Methods 3, 1–12 (2019)
Article
CAS
Google Scholar
Sodium to boost batteries by 2020. in une année avec le CNRS (2017).
X. Rong et al., Na-ion batteries: From fundamental research to engineering exploration. Energy Storage Sci. Technol. 9, 515 (2020)
Google Scholar
Datasheet 2019 Natron energy blue tray 4000. in Distributed at the Battery Show (2019).
Wessells, C. D. Chapter 7. Batteries Containing Prussian Blue Analogue Electrodes. in Na-ion Batteries 265–312 (2020).
CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries. (2021).
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 1–11 (2018)
Article
Google Scholar
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)
CAS
Article
Google Scholar
Y. Sun et al., Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem 2, 100031 (2020)
Article
Google Scholar
K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1–49 (2018)
Article
CAS
Google Scholar
K. Habib, S.T. Hansdóttir, H. Habib, Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020)
Article
Google Scholar
K. Habib, H. Wenzel, Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J. Clean. Prod. 84, 348–359 (2014)
CAS
Article
Google Scholar
P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018)
Article
CAS
Google Scholar
C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—A critical review. Energy Environ. Sci. 11, 243–257 (2018)
CAS
Article
Google Scholar
C. Delmas, Sodium and sodium-ion batteries: 50 Years of research. Adv. Energy Mater. 8, 170 (2018)
Article
CAS
Google Scholar
Hofstra, A. H. & Kreiner, D. C. Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. US Geological Survey (2020).
Stocks, J., Blunden, J. R. & Down, C. G. Mining and the environment. Mining Mag. vol. 131 (1974).
Nishimatsu, Y. Mining Engineering and Mineral Transportation. in Civil Engineering - Vol. II - Encyclopedia of Life Support Systems 132–154 (2009).
Okubo, S. & Yamatomi, J. Underground Mining Methods and Equipment. in Civil Engineering - Vol. II - Encyclopedia of Life Support Systems (2009).
Yamatomi, J. & Okubo, S. Surface Mining Methods and Equipment. in Civil Engineering - Vol. II - Encyclopedia of Life Support Systems 155–170 (2009).
Watson, I. Methodology Report 2017. Responsible Min. Index (2018).
É. Lèbre et al., The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 1–8 (2020)
Article
CAS
Google Scholar
T. Watari, K. Nansai, K. Nakajima, Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 155, 104669 (2020)
Article
Google Scholar
C. Helbig, A. Thorenz, A. Tuma, Quantitative assessment of dissipative losses of 18 metals. Resour. Conserv. Recycl. 153, 104537 (2020)
Article
Google Scholar
T. Watari, K. Nansai, K. Nakajima, Major metals demand, supply, and environmental impacts to 2100: A critical review. Resour. Conserv. Recycl. 164, 105107 (2021)
Article
Google Scholar
D.H.S. Tan, P. Xu, Z. Chen, Enabling sustainable critical materials for battery storage through efficient recycling and improved design: A perspective. MRS Energy Sustain. 7, 27 (2020)
Article
Google Scholar
M. Chen et al., Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 3, 2622–2646 (2019)
CAS
Article
Google Scholar
J. Chen et al., High performance of hexagonal plates P2-Na2/3Fe1/2Mn1/2O2 cathode material synthesized by an improved solid-state method. Mater. Lett. 202, 21–24 (2017)
CAS
Article
Google Scholar
T. Jin et al., Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chemie 132, 14619–14624 (2020)
Article
Google Scholar
Y. Bai et al., Enhanced sodium ion storage behavior of P2-Type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces 8, 2857–2865 (2016)
CAS
Article
Google Scholar
T. Liu et al., Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10, 1–7 (2019)
Article
CAS
Google Scholar
L. Gaines, Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 17, e00068 (2018)
CAS
Google Scholar
E. Geis, Lazarus batteries. Nature 526, S100–S101 (2015)
Article
CAS
Google Scholar
T. Liu et al., Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12, 1512–1533 (2019)
CAS
Article
Google Scholar
X. Hu, S.E. Li, Y. Yang, Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans. Transp. Electrif. 2, 140–149 (2016)
Article
Google Scholar
M. AttarianShandiz, R. Gauvin, Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries. Comput. Mater. Sci. 117, 270–278 (2016)
CAS
Article
Google Scholar
G. Houchins, V. Viswanathan, An accurate machine-learning calculator for optimization of Li-ion battery cathodes. J. Chem. Phys. 153, 054124 (2020)
CAS
Article
Google Scholar
V.L. Deringer, Modelling and understanding battery materials with machine-learning-driven atomistic simulations. J. Phys. Energy 2, 041003 (2020)
CAS
Article
Google Scholar
M. Aykol et al., Perspective—Combining physics and machine learning to predict battery lifetime. J. Electrochem. Soc. 168, 030525 (2021)
CAS
Article
Google Scholar
Clément, R. J. & Soc, J. E. Review — Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials. (2015) doi:https://doi.org/10.1149/2.0201514jes.
Liu, H., Gao, X. & Hou, H. Manganese-based layered oxide cathodes for sodium ion batteries. pp. 200–225 (2020) doi:https://doi.org/10.1002/nano.202000030.
Y. Zhang et al., Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: Oxygen redox chemistry and oxygen release suppression. ACS Cent. Sci. 6, 232–240 (2020)
CAS
Article
Google Scholar
Ma, C. et al. Exploring oxygen activity in the high energy P2-Type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 139, 4835–4845 (2017).
D.H. Lee, J. Xu, Y.S. Meng, An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 15, 3304–3312 (2013)
CAS
Article
Google Scholar
L. Mn et al., Electrochimica Acta Study on enhancing electrochemical properties of Li in layered. Electrochim. Acta 263, 474–479 (2018)
Article
CAS
Google Scholar
W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto, material with enhanced performance for Na ion batteries. Mater. Lett. 135, 131–134 (2014)
CAS
Article
Google Scholar
Y. Liu et al., Nano Energy sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modi fi cation. Nano Energy 27, 27–34 (2016)
CAS
Article
Google Scholar
P. Manikandan, D. Ramasubramonian, M.M. Shaijumon, Electrochimica Acta material for sodium-ion batteries. Electrochim. Acta 206, 199–206 (2016)
CAS
Article
Google Scholar
J.W. Somerville, R.A. House, N. Tapia-ruiz, A. Sobkowiak, S. Ramos, Identification and characterisation of high energy density P2-type Na2/3[Ni1/3-y/2Mn2/3-y/2Fey]O2 compounds for Na-ion batteries. Mater. Chem. A 6, 5271–5275 (2018)
CAS
Article
Google Scholar
N. Ni et al., Insights into the dual-electrode characteristics of layered materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2, 17 (2017)
Google Scholar
Luo, R. et al. Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. 383, 80–86 (2018).
Hemalatha, K., Jayakumar, M. & Prakash, A. S. Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1−xO2 cathodes for sodium-ion batteries. 1223–1232 (2018) doi:https://doi.org/10.1039/c7dt04372d.
Y. Wang, A study on electrochemical properties of P2-type Na–Mn–Co–Cr–O cathodes for sodium-ion batteries. Inorg. Chem. Front. 5, 577–584 (2018)
CAS
Article
Google Scholar
Kang, W. et al. High-power and long-life sodium-ion batteries. 0–7 (2016) https://doi.org/10.1021/acsami.6b10841.
Wang, P. et al. Na+ vacancy disordering promises high-rate Na-ion batteries. 1–10 (2018).
F. Hu, X. Jiang, Li-substituted P2-Na0.66LixMn0.5Ti0.5O2 as an advanced cathode material and new ‘‘bi-functional” electrode for symmetric sodium-ion batteries. Adv. Powder Technol. 29, 1049–1053 (2018)
CAS
Article
Google Scholar
C. Li et al., Unraveling the critical role of Ti substitution in P2-NaxLiyMn1−yO2 cathodes for highly reversible oxygen redox chemistry. Chem. Mater. 32, 1054 (2020)
CAS
Article
Google Scholar
T. Lan, W. Wei, S. Xiao, G. He, J. Hong, P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density and structural stability for sodium-ion batteries. J. Mater. Sci. Mater. Electron. 31, 9423–9429 (2020)
CAS
Article
Google Scholar
C. Zhao, Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode. Chemistry 5, 2913–2925 (2019)
CAS
Article
Google Scholar
A. Milewska, Ś Konrad, W. Zaj, J. Molenda, Overcoming transport and electrochemical limitations in the high-voltage Na0.67Ni0.33Mn0.67-yTiyO2 (0≤y≤0.33) cathode materials by Ti-doping. J. Power Sources 404, 39–46 (2018)
CAS
Article
Google Scholar
L. Yang et al., Lithium-doping stabilized high-performance P2− P2− Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J. Am. Chem. Soc. 141, 6680–6689 (2019)
CAS
Article
Google Scholar
I. Hasa, D. Buchholz, S. Passerini, B. Scrosati, J. Hassoun, High performance Na0.5[Ni 0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 4, 2–8 (2014)
Article
CAS
Google Scholar
C. Marino, E. Marelli, C. Villevieille, S. Park, N. He, Co-free P2−Free P2−Na0.67Mn0.6Fe0.25Al0.15O2 as promising cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 1, 5960–5967 (2018)
Article
CAS
Google Scholar
Q. Yang et al., Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2–O2 phase transition toward high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 10, 34272–34282 (2018)
CAS
Article
Google Scholar
R. Stoyanova et al., Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J. Solid State Chem. 183, 1372–1379 (2010)
CAS
Article
Google Scholar
S. Kumakura, Y. Tahara, K. Kubota, K. Chihara, S. Komaba, Sodium and manganese stoichiometry of P2-Type Na2/3MnO2. Angew. Chemie 128, 12952–12955 (2016)
Article
Google Scholar
X. Zheng et al., New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater. 15, 257–265 (2018)
Article
Google Scholar
H. Yoshida, N. Yabuuchi, S. Komaba, NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60–63 (2013)
CAS
Article
Google Scholar
J.E. Wang, W.H. Han, K.J. Chang, Y.H. Jung, D.K. Kim, New insight into Na intercalation with Li substitution on alkali site and high performance of O3-type layered cathode material for sodium ion batteries. Mater. Chem. A 6, 22731–22740 (2018)
CAS
Article
Google Scholar
M. Huon, E. Gonzalo, M. Casas-cabanas, Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 258, 266–271 (2014)
Article
CAS
Google Scholar
L. Sun et al., Insight into Ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application. Small 1704523, 1–7 (2018)
Google Scholar
K. Jung et al., Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries. Solid State Sci. 106, 106334 (2020)
CAS
Article
Google Scholar
D. Zhou, materials The effect of Na content on the electrochemical for sodium-ion batteries. J. Mater. Sci. 54, 7156–7164 (2019)
CAS
Article
Google Scholar
J. Hwang, S. Myung, D. Aurbach, Y. Sun, Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. J. Power Sources 324, 106–112 (2016)
CAS
Article
Google Scholar
J.S. Thorne et al., Structure and electrochemistry of NaxFexMn1−xO2(1.0≤x≤0.5) for Na-ion battery positive electrodes for Na-ion battery positive electrodes. J. Electrochem. Soc. 2, 361–367 (2013)
Article
CAS
Google Scholar
Nguyen, L. H. B., Chen, F., Masquelier, C. & Croguennec, L. Chapter 2. Polyanionic-type Compounds as Positive Electrode for Na-ion batteries. in Na-ion Batteries 47–100 (2020).
L.H.B. Nguyen et al., First 18650-format Na-ion cells aging investigation: A degradation mechanism study. J. Power Sources 529, 1–8 (2022)
Article
CAS
Google Scholar
W. Zhou et al., NaxMV(PO4)3 (M=Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 3, 3–8 (2016)
Google Scholar
F. Chen et al., A NASICON-type positive electrode for na batteries with high energy density: Na4MnV(PO4)3. Small Methods 1800218, 1–9 (2019)
Google Scholar
H. Li, M. Xu, Z. Zhang, Y. Lai, J. Ma, Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density. Adv. Funct. Mater. 30, 1–29 (2020)
Google Scholar
P. Barpanda, L. Lander, S.I. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 8, 1–26 (2018)
Article
CAS
Google Scholar
M. Bianchini, P. Xiao, Y. Wang, G. Ceder, Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 7, 1700514 (2017)
Article
CAS
Google Scholar
M. Kim, D. Kim, W. Lee, H.M. Jang, B. Kang, New class of 3.7 v Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework. Chem. Mater. 30, 6346–6352 (2018)
CAS
Article
Google Scholar
T. Song et al., A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage. Angew. Chemie 132, 750–755 (2020)
Article
Google Scholar
J. Olchowka et al., Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials. Chem. Commun. 55, 11719–11722 (2019)
CAS
Article
Google Scholar
Q. Liu et al., The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 30, 1–15 (2020)
Google Scholar
M. Pasta et al., Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 4211–4223 (2016)
CAS
Article
Google Scholar
X. Wu et al., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393–5399 (2016)
CAS
Article
Google Scholar
J. Sottmann et al., In operando synchrotron XRD/XAS investigation of sodium insertion into the prussian blue analogue cathode material Na1.32Mn[Fe(CN)6]0.83·zH2O. Electrochim. Acta 200, 305–313 (2016)
CAS
Article
Google Scholar
G. He, L.F. Nazar, Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017)
CAS
Article
Google Scholar
Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014)
CAS
Article
Google Scholar
D. Su, A. McDonagh, S. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017)
Article
CAS
Google Scholar
H. Wang, Q. Zhu, H. Li, C. Xie, D. Zeng, Tuning the particle size of Prussian blue by a dual anion source method. Cryst. Growth Des. 18, 5780–5789 (2018)
CAS
Article
Google Scholar
A. Shrivastava, K.C. Smith, Electron conduction in nanoparticle agglomerates limits apparent Na+ diffusion in prussian blue analogue porous electrodes. J. Electrochem. Soc. 165, A1777–A1787 (2018)
CAS
Article
Google Scholar
Y. Moritomo, S. Urase, T. Shibata, Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim. Acta 210, 963–969 (2016)
CAS
Article
Google Scholar
Chen, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. 1094–1105 doi:https://doi.org/10.1016/j.joule.2019.02.004.
C. Niu et al., Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021)
CAS
Article
Google Scholar