Skip to main content
Log in

Thermoelectric properties of nanocrystalline silicon film grown by PECVD

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We investigate the thermoelectric properties of boron-doped nanocrystalline silicon (nc-Si) films grown by plasma-enhanced chemical-vapor deposition (PECVD). The as-grown nc-Si films with thicknesses of 212 nm were boron-ion implanted to a concentration of 9\(\times \)10\(^{20}\) atoms/cm\(^{3}\). Subsequent rapid thermal annealing at 800\(^{\circ }\)C activated the dopants. X-ray diffraction, Raman spectroscopy and transmission electron microscopy have been employed for structural characterizations. The in-plane electrical conductivity (\(\sigma \)), and the Seebeck coefficient ( S ) of the doped and annealed film, and the cross-plane thermal conductivity (\(\kappa \)) of an undoped, but annealed films are measured in the range of 300 K to 750 K. We estimate that the power factor (\(\sigma S^{2}\)) and the dimensionless figure-of-merit ZT (\(\sigma S^{2}\)T/\(\kappa \)) are about 0.50 mW/mK\(^{2}\) and 0.11 at 300 K, respectively. These parameters increase with temperature and they are 1.41 mW/mK\(^{2}\) and 0.82 at 750 K. The enhancement of ZT is a result of an increase of Seebeck coefficient and a decrease of thermal conductivity caused by a successful reduction of grain sizes of nc-Si films. Our results suggest that heavily ion-implanted nc-Si films provide a new route to realize practical high temperature thin film thermoelectric materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the reported study are available from the corresponding authors on a reasonable request.

References

  1. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus et al., Nano Lett. 8(12), 4670–4674 (2008)

    Article  CAS  Google Scholar 

  2. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, Adv. Funct. Mater. 19(15), 2445–2452 (2009)

    Article  CAS  Google Scholar 

  3. V. Kessler, M. Dehnen, R. Chavez, M. Engenhorst, J. Stoetzel, N. Petermann, K. Hesse, T. Huelser, M. Spree, C. Stiewe et al., J. Electron. Mater. 43(5), 1389–1396 (2014)

    Article  CAS  Google Scholar 

  4. C. Dames, G. Chen, J. Appl. Phys. 95(2), 682–693 (2004)

    Article  CAS  Google Scholar 

  5. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Nano Lett. 11(6), 2206–2213 (2011)

    Article  CAS  Google Scholar 

  6. B. Jugdersuren, B.T. Kearney, J.C. Culbertson, C.N. Chervin, M.B. Katz, R.M. Stroud, X. Liu, Commun. Phys. 4(1), 1–10 (2021)

    Article  Google Scholar 

  7. D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M. Martin-Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel et al., Mater. Sci. Eng.: R: Rep. 138, 210–255 (2019)

    Article  Google Scholar 

  8. E. Acosta, N. Wight, V. Smirnov, J. Buckman, N. Bennett, J. Electron. Mater. 47(6), 3077–3084 (2018)

    Article  CAS  Google Scholar 

  9. B. Jugdersuren, B. Kearney, D. Queen, T. Metcalf, J. Culbertson, C. Chervin, R. Stroud, W. Nemeth, Q. Wang, X. Liu, Phys. Rev. B 96(1), 014206 (2017)

    Article  Google Scholar 

  10. B. Jugdersuren, B.T. Kearney, X. Liu, R.M. Stroud, J.C. Culbertson, P.A. Desario, W. Nemeth, Q. Wang, J. Electron. Mater. 48(8), 5218–5225 (2019)

    Article  CAS  Google Scholar 

  11. S.M. Lee, D.G. Cahill, J. Appl. Phys. 81(6), 2590–2595 (1997)

    Article  CAS  Google Scholar 

  12. V. Paillard, P. Puech, M. Laguna, R. Carles, B. Kohn, F. Huisken, J. Appl. Phys. 86(4), 1921–1924 (1999)

    Article  CAS  Google Scholar 

  13. D.G. Cahill, H.E. Fischer, T. Klitsner, E. Swartz, R. Pohl, J. Vacuum Sci. Technol. A: Vacuum Surf. Films 7(3), 1259–1266 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Battogtokh Jugdersuren or Xiao Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jugdersuren, B., Liu, X., Culbertson, J.C. et al. Thermoelectric properties of nanocrystalline silicon film grown by PECVD. MRS Advances 7, 853–857 (2022). https://doi.org/10.1557/s43580-022-00345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00345-9

Navigation