Skip to main content
Log in

Quantum–mechanical characterization of the doxorubicin molecule to improve its anticancer functions

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We are presenting results based on the density-functional theory, DFT, in order to obtain stable structures of the doxorubicin molecule that may lead for healthier ways to inhibit cancer cells for humans. We obtained several electrochemical properties; such as electronic affinity, chemical potential, chemical hardness, electrophilicity index, and ionization potential. The maximum reactivity zone of a molecule is obtained founding its HOMO–LUMO boundary molecular orbitals and reactive sites were determined by Fukui indices. The distribution of electric charges and Mulliken population were obtained to determine areas and sites with excess or deficit of electrons. The Raman spectrum was theoretically obtained. The information presented would be very useful for possible new anticancer drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S.M. Swain, F.S. Whaley, Ewer MS. Cancer 97, 2869–2879 (2003)

    Article  CAS  Google Scholar 

  2. C. Carvalho, R.X. Santos, S. Cardoso, S. Correia, P.J. Oliveira, M.S. Santos, P.I. Moreira, Curr. Med. Chem. (2009). https://doi.org/10.2174/092986709788803312

    Article  Google Scholar 

  3. A. Pugazhendhi, T.N.J.I. Edison, B.K. Velmurugan, J.A. Jacob, I. Karuppusamy, Life Sci. (2018). https://doi.org/10.1016/j.lfs.2018.03.023

    Article  Google Scholar 

  4. J. Yu, C. Wang, Q Kong, X. Wu, J.J. Lu, X. Chen, Phytomedicine (2018). https://doi.org/10.1016/j.phymed.2018.01.009

    Article  Google Scholar 

  5. M. Slingerland, H.J. Guchelaar, H. Gelderblom, Liposomal. Drug Discov. Today 17, 160–166 (2012). https://doi.org/10.1016/j.drudis.2011.09.015

    Article  CAS  Google Scholar 

  6. F.C. Maluf, D. Spriggs, Gynecol. Oncol. 85, 18–31 (2002). https://doi.org/10.1006/gyno.2001.6355

    Article  CAS  Google Scholar 

  7. J. Wang, J. Zhang, M. Xiao, S. Wang, J. Wang, Y. Guo, Y. Tang, J. Gu, Cell Mol. Life Sci. 78, 3105–3125 (2021). https://doi.org/10.1007/s00018-020-03729-y

    Article  Google Scholar 

  8. R.B. Weiss, Semin. Oncol. 19(6), 670–686 (1992)

    CAS  Google Scholar 

  9. M.L. Immordino, F. Dosio, L. Cattel, Int. J. Nanomed. 1, 297–315 (2006)

    Article  CAS  Google Scholar 

  10. B. Petri, A. Bootz, A. Khalansky, T. Hekmatara, R. Müller, R. Uhl, J. Kreuter, S. Gelperina, J. Control Release 117, 51–58 (2007)

    Article  CAS  Google Scholar 

  11. R. Von Moos, B.J. Thuerlimann, M. Aapro, D. Rayson, K. Harrold, J. Sehouli, F. Scotte, D. Lorusso, R. Dummer, M.E. Lacouture, Eur. J. Cancer 44, 781–790 (2008)

    Article  Google Scholar 

  12. A. Sousa-Herves, S. Wedepohl, M. Calderón, Chem. Commun. 51, 5264–5267 (2015)

    Article  CAS  Google Scholar 

  13. S. Vela, F.H. Huarte-Larrañaga, Carbon (2011). https://doi.org/10.1016/j.carbon.2011.06.067

    Article  Google Scholar 

  14. E. Yaghoobpour, A. Ahmadpour, N. Farhadian, M. Shariaty-Niassar, Korean J. Chem. Eng. (2015). https://doi.org/10.1007/s11814-014-0250-9

    Article  Google Scholar 

  15. R.G. Parr, W. Yang, Int. Quantum Chem. (1989). https://doi.org/10.1002/qua.560470107

    Article  Google Scholar 

  16. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  Google Scholar 

  18. Qi. Li, Li. Fa-tang, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129915

    Article  Google Scholar 

  19. J. Sánchez-Márquez, V. García, D. Zorrilla, M. Fernández, J. Phys. Chem. A (2020). https://doi.org/10.1021/acs.jpca.0c01342

    Article  Google Scholar 

  20. U. Sarkar, P.K. Chattaraj, Reactivity dynamics. J Phys Chem A (2021). https://doi.org/10.1021/acs.jpca.0c10788

    Article  Google Scholar 

  21. R.S. Das, Y.K. Agrawal, Vib. Spectrosc. 57, 163–176 (2011)

    Article  CAS  Google Scholar 

  22. Z. Farhane, F. Bonnier, A. Caseya, H.J. Byrnea, Analyst 140, 4212 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support received from the National System of Researchers, (SNI) of the National Council of Science and Technology of Mexico (CONACyT), to Universidad Autónoma de la Ciudad de México (UACM), Instituto Politécnico Nacional (IPN) of Mexico, and to the Universidad Nacional Autónoma de México (UNAM). Also, one of the authors acknowledged for the UACM financial support, by the CCyT-2021-3 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Garcia-Quiroz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Chavez, E., Garcia-Quiroz, A., Santiago-Jiménez, J.C. et al. Quantum–mechanical characterization of the doxorubicin molecule to improve its anticancer functions. MRS Advances 6, 897–902 (2021). https://doi.org/10.1557/s43580-021-00182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00182-2

Navigation