Skip to main content
Log in

Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Recent studies have shown that 1,3,5-triazine (s-triazine) derivatives are potent anticancer agents. The optimized geometry and vibrational frequencies of three 1,3,5-triazine derivatives (2,4,6-triallyloxy-1,3,5-triazine, 2-chloro-4,6-dimethoxy-1,3,5-triazine and 2-butoxy-4,6-dichloro-1,3,5-triazine) have been computed using density functional theory (DFT) method. The intramolecular interactions of the title molecules have been analyzed using natural bond orbital analysis. The calculated frontier molecular orbitals have affirmed the charge transfer interaction takes place within the molecules. The quantitative structure–activity relationship (QSAR) has been analyzed for a set of ALK inhibitors and the externally validated QSAR model has theoretically predicted the inhibitory power of the title molecules. The molecular docking calculation has predicted the binding ability of the title compounds with the non-small cell lung cancer target. The molecular dynamic simulation study has validated the stability of the protein–ligand complexes. Furthermore, the drug-likeness and bioavailability of the title molecules has been assessed through in silico approach. The present investigation could help identify the 1,3,5-triazine family as an efficient anticancer drug candidate in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: An overview. Int J Cancer 149(4):778–789

    Article  CAS  Google Scholar 

  3. Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G (2017) 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur J Med Chem 142:523–549

    Article  PubMed  CAS  Google Scholar 

  4. Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G (2017) An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur J Med Chem 142:328–375

    Article  PubMed  CAS  Google Scholar 

  5. Shah DR, Modh RP, Chikhalia KH (2014) Privileged s-triazines: structure and pharmacological applications. Future Med Chem 6(4):463–477

    Article  PubMed  CAS  Google Scholar 

  6. Patel RV, Kumari P, Rajani DP, Pannecouque C, De Clercq E, Chikhalia KH (2012) Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s-triazine-based heterocycles. Future Med Chem 4(9):1053–1065

    Article  PubMed  CAS  Google Scholar 

  7. Patil V, Noonikara-Poyil A, Joshi SD, Patil SA, Sa P, Lewis AM, Bugarin A (2020) Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents. J Mol Struct 1220:128687

    Article  CAS  Google Scholar 

  8. El-Faham A, Farooq M, Almarhoon Z, Abd Alhameed R, Wadaan MAM, De la Torre BG, Albericio F (2020) Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg Chem 94:103397

    Article  PubMed  CAS  Google Scholar 

  9. Hamama WS, Ismail MA, Shaaban S, Zoorob HH (2012) Synthesis and biological evaluation of some new Thiazolo[3,2-a][1,3,5]triazine derivatives. Med Chem Res 21:2615–2623

    Article  CAS  Google Scholar 

  10. Wróbel A, Kolesińska B, Frączyk J et al (2020) Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest New Drugs 38:990–1002

    Article  PubMed  Google Scholar 

  11. Jagadeesh Kumar G, Sriramkumar Bomma HVS, Srihari E, Shrivastava S, Naidu VGM, Srinivas K, Jayathirtha Rao V (2013) Synthesis and anticancer activity of some new s-triazine derivatives. Med Chem Res 22(12):5973–5981

    Article  CAS  Google Scholar 

  12. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Comp 48:7–10

    Article  CAS  Google Scholar 

  13. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR (2015) Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 20(9):16852–16891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Heravi MM, Zadsirjan V (2020) Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv 10:44247–44311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu B, Sun T, Zhou Z, Du L (2015) A systematic review on antitumor agents with 1,3,5-triazines. Med Chem 5:131–148

    Article  Google Scholar 

  16. Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H (2017) A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 11:87

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chan JK, Loizzi V, Manetta A, Berman ML (2004) Oral altretamine used as salvage therapy in recurrent ovarian cancer. Gynecol Oncol 92(1):368–371

    Article  PubMed  CAS  Google Scholar 

  18. Frei E III, Eder JP (2003) Combination chemotherapy. In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei E III (eds) Holland-Frei cancer medicine, 6th edn. BC Decker, Ontario

  19. Maliszewski D, Drozdowska D (2022) Recent Advances in the Biological Activity of s-Triazine Core Compounds. Pharmaceuticals 15(2):221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hu J, Zhang Y, Tang N, Lu Y, Guo P, Huang Z (2021) Discovery of novel 1, 3, 5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR. Bioorg Med Chem 32:115997

    Article  PubMed  CAS  Google Scholar 

  21. Oudah KH, Najm MA, Samir N, Serya RA, Abouzid KA (2019) Design, synthesis and molecular docking of novel pyrazolo [1, 5-a][1, 3, 5] triazine derivatives as CDK2 inhibitors. Bioorg Chem 92:103239

    Article  PubMed  CAS  Google Scholar 

  22. Yan W, Zhao Y, He J (2018) Anti-breast cancer activity of selected 1, 3, 5-triazines via modulation of EGFR-TK. Mol Med Rep 18(5):4175–4184

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Singh UP, Shrivastava JK, Verma A, Bhat HR (2017) Discovery of 1,3,5-triazine-monastrol based novel EGFR-tyrosine kinase inhibitor against human lung carcinoma. Ann Oncol 28:ii10

  24. El-Wakil MH, Khattab SN, El-Yazbi AF, El-Nikhely N, Soffar A, Khalil HH (2020) New chalcone-tethered 1, 3, 5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg Chem 105:104393

    Article  PubMed  CAS  Google Scholar 

  25. Balaha MF, El-Hamamsy MH, El-Din NAS, El-Mahdy NA (2016) Synthesis, evaluation and docking study of 1,3,5-triazine derivatives as cytotoxic agents against lung cancer. J Appl Pharm Sci 6:28–45

    Article  CAS  Google Scholar 

  26. Iikubo K, Kondoh Y, Shimada I, Matsuya T, Mori K, Ueno Y, Okada M (2018) Discovery of N-{2-Methoxy-4-[4-(4-methylpiperazin-1-yl) piperidin-1-yl] phenyl}-N′-[2-(propane-2-sulfonyl) phenyl]-1, 3, 5-triazine-2, 4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor. Chem Pharm Bull 66(3):251–262

    Article  Google Scholar 

  27. Chan BA, Hughes BG (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4(1):36–54

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Frisch MJ et al (2009) Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT

  29. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

  30. Sundius T (2002) Scaling of ab initio force fields by MOLVIB. Vib Spectrosc 29:89–95

    Article  CAS  Google Scholar 

  31. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO Version 3.1, Gaussian Inc., Pittsburgh

  32. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  33. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  34. de Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct Relationships 19:599–601

    Article  Google Scholar 

  35. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  PubMed Central  CAS  Google Scholar 

  36. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  37. Lee SK, Chang GS, Lee IH, Chung JE, Sung KY, No KT (2004) The PreADME: PC-based program for batch predication of ADME properties. In: Proceedings of the EuroQSAR 2004, Istanbul

  38. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fridman N, Kapon M, Kaftory M (2003) 2-Chloro-4,6-dimethoxy-1,3,5-triazine. Acta Cryst C 59:o685-686

    Article  Google Scholar 

  40. Goreshnik EA, Ciunik LZ, Gorelenko YK, Mys' kiv MG (2004) Complexation of the 2, 4, 6‐Triallyloxy‐1, 3, 5‐triazine with Copper (I, II) Chlorides. Syntheses and Crystal Structures of [CuCl2·2C3N3(OC3H5)3],[Cu7Cl8·2C3N3(OC3H5)3], and [Cu8Cl8· 2C3N3(OC3H5)3]·2C2H5OH. Z Anorg Allg Chem 630(15):2743–2748

  41. Celik D, Kose M (2019) Triazine based Mn (II) and Mn (II)/Ln (III) complexes: Synthesis, characterization and catecholase activities. Appl Organomet Chem 33(2):e4721

    Article  Google Scholar 

  42. Zhang M, Lu RZ, Han LN, Wei WB, Wang HB (2009) Methyl 4-butoxy-3-methoxybenzoate. Acta Cryst E 65(2):o434-434

    Article  CAS  Google Scholar 

  43. Wheatley PJ (1955) The crystal and molecular structure of s-triazine. Acta Cryst 8(4):224–226

    Article  CAS  Google Scholar 

  44. Sangeetha V, Govindarajan M, Kanagathara N, Marchewka MK, Gunasekaran S, Anbalagan G (2014) Vibrational, DFT, thermal and dielectric studies on 3-nitrophenol-1, 3, 5-triazine-2, 4, 6-triamine (2/1). Spectrochim Acta A Mol Biomol Spectrosc 118:1025–1037

    Article  PubMed  CAS  Google Scholar 

  45. Jin GF, Ban HS, Nakamura H, Lee JD (2018) o-Carboranylalkoxy-1, 3, 5-Triazine Derivatives: Synthesis, Characterization, X-ray Structural Studies, and Biological Activity. Molecules 23(9):2194

    Article  PubMed Central  Google Scholar 

  46. Alhaddad OA, Abu Al-Ola KA, Hagar M, Ahmed HA (2020) Chair-and V-Shaped of H-bonded supramolecular complexes of azophenyl nicotinate derivatives; mesomorphic and DFT molecular geometry aspects. Molecules 25(7):1510

    Article  PubMed Central  CAS  Google Scholar 

  47. Alves JA, Brigas AF, Johnstone RA (1996) 3-(1-naphthyloxy)-1, 2-benzisothiazole 1, 1-dioxide: Electronic effects of conjugation. Acta Crystallogr C 52(6):1576–1579

    Article  Google Scholar 

  48. Dereli Ö, Bahçeli S, Abbas A, Naseer MM (2015) Quantum chemical investigations of a co-crystal of 1,3,5-tris(4-hydroxyphenyl)benzene and 2,4,6-trimethoxy-1,3,5-triazine. Monatsh Chem 146:1473–1484

    Article  CAS  Google Scholar 

  49. El-Faham A, Soliman SM, Osman SM, Ghabbour HA, Siddiqui MR, Fun HK, Albericio F (2016) One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl) amino acid ester derivatives. Spectrochim Acta A Mol Biomol Spectrosc 159:184–198

    Article  PubMed  CAS  Google Scholar 

  50. Cinar Z, Karabacak M, Cinar M, Kurt M, Sundaraganesan N (2013) The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine. Spectrochim Acta A Mol Biomol Spectrosc 116:451–459

    Article  PubMed  CAS  Google Scholar 

  51. Socrates G (2004) Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons, UK

    Google Scholar 

  52. Larkin PJ (2017) Infrared and Raman spectroscopy: Principles and Spectral Interpretation, 2nd edn. Elsevier, Netherlands

    Google Scholar 

  53. Yuan X, Luo K, Zhang K, He J, Zhao Y, Yu D (2016) Combinatorial Vibration-Mode Assignment for the FTIR Spectrum of Crystalline Melamine: A Strategic Approach toward Theoretical IR Vibrational Calculations of Triazine-Based Compounds. J Phys Chem A 120(38):7427–7433

    Article  PubMed  CAS  Google Scholar 

  54. Akram N, Mansha A, Premkumar R, Franklin Benial AM, Asim S, Iqbal SZ, Ali HS (2020) Spectroscopic, quantum chemical and molecular docking studies on 2,4-dimethoxy-1,3,5-triazine: a potent inhibitor of protein kinase CK2 for the development of breast cancer drug. Molecular Simulation, 46, 1340 - 1353. (2020) Spectroscopic, quantum chemical and molecular docking studies on 2,4-dimethoxy-1,3,5-triazine: a potent inhibitor of protein kinase CK2 for the development of breast cancer drug. Mole Simulation 46:1340–1353

  55. Kanagathara N, Marchewka MK, Drozd M, Renganathan NG, Gunasekaran S, Anbalagan G (2013) Preparation, crystal structure, vibrational spectral and density functional studies of bis(4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate. J Mol Struct 1049:345–354

    Article  CAS  Google Scholar 

  56. Pekparlak A, Avci D, Atalay Y, Esmer K (2012) Theoretical Studies of Molecular Structure and Vibrational Spectra of Melaminium Salt: 2,4,6-Triamino-1,3,5-triazin-1,3-ium Tartrate Monohydrate. Arab J Sci Eng 37:171–181

    Article  CAS  Google Scholar 

  57. Roeges NPG (1994) A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley, New York

    Google Scholar 

  58. Smith BC (2017) The C-O Bond III: Ethers by a knockout. Spectroscopy 32:22–26

    CAS  Google Scholar 

  59. Sebastian SS, Al-Tamimi AM, El-Brollosy NR, El-Emam AA, Yohannan Panicker C, Van Alsenoy C (2015) Vibrational spectroscopic (FT-IR and FT-Raman) studies, HOMO–LUMO, NBO analysis and MEP of 6-methyl-1-({[(2E)-2-methyl-3-phenyl-prop-2-en-1-yl]oxy}methyl)-1,2,3,4-tetra-hydroquinazoline-2,4-dione, a potential chemotherapeutic agent, using density functional methods. Spectrochim Acta A Mol Biomol Spectrosc 134:316–325

    Article  PubMed  CAS  Google Scholar 

  60. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. John Wiley & Sons, New York

    Google Scholar 

  61. Joseph L, Sajan D, Chaitanya K, Isac J (2014) Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations. Spectrochim Acta A Mol Biomol Spectrosc 122:375–386

    Article  PubMed  CAS  Google Scholar 

  62. Colthup NB, Daly LH, Wiberley SE (1975) Introduction to Infrared and Raman Spectroscopy, 2nd edn. Academic Press, New York

    Google Scholar 

  63. Smith B (1998) Infrared spectral interpretation: a systematic approach, 1st edn. CRC Press, USA

    Google Scholar 

  64. Al-Wabli RI, Govindarajan M, Almutairi MS, Attia MI (2017) A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone. Open Chem 15:238–246

    Article  CAS  Google Scholar 

  65. Balachandran V, Lakshmi A, Janaki A (2011) Vibrational spectroscopic study and NBO analysis on 2-chloro-4, 6-diamino-1,3,5-triazine using DFT method. Recent Res Sci Technol 3(1):114–123

    CAS  Google Scholar 

  66. Sheikhi M, Shahab S (2016) Quantum Chemical Modeling of 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea: Molecular structure, NMR, FMO, MEP and NBO analysis based on DFT calculations. J Phy Theor Chem 13(3):277–288

    Google Scholar 

  67. Foster JP, Wienhold F (1980) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  68. James C, Raj AA, Reghunanthan R, Jayakumar VS, Joe IH (2006) Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N, Ndimethylbenzylidene)cyclohexanone using density functional theory. J Raman Spectrosc 37:1381–1392

    Article  CAS  Google Scholar 

  69. Brovarets’ OH, Yurenko YP, Hovorun DM (2014) Intermolecular CH··· O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dyn 32(6):993–1022

    Article  Google Scholar 

  70. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  71. Pang F, Pulay P, Boggs JE (1982) The structure of some nitrogen heteroaromatics. J Mol Struct 88:79–89

    Article  Google Scholar 

  72. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB (2020) A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25(8):1909

  73. Murray JS, Sen K (1996) Molecular Electrostatic Potentials: Concepts and Applications, 1st edn. Elsevier, New York

    Google Scholar 

  74. Prabhaharan M, Prabakaran AR, Srinivasan S, Gunasekaran S (2014) Density functional theory studies on molecular structure, vibrational spectra and electronic properties of cyanuric acid. Spectrochim Acta A Mol Biomol Spectrosc 138:711–722

    Article  PubMed  Google Scholar 

  75. Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F (2020) Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. J Chem Res 45:147–158

    Article  Google Scholar 

  76. Tomaz CT (2017) Hydrophobic interaction chromatography, Liquid Chromatography, 2nd Edn. Elsevier (171–190)

  77. Valadbeigi Y, Gal J (2018) On the Significance of Lone Pair/Lone Pair and Lone Pair/Bond Pair Repulsions in the Cation Affinity and Lewis Acid/Lewis Base Interactions. ACS Omega 3(9):11331–11339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748

    Article  PubMed  CAS  Google Scholar 

  79. Basanagouda M, Jadhav VB, Kulkarni MV, Rao RN (2011) Computer Aided Prediction of Biological Activity Spectra: Study of Correlation between Predicted and Observed Activities for Coumarin-4-Acetic Acids. Indian J Pharm Sci 73(1):88–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33:372–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova TA, Filimonov DA, Sastry NG, Poroikov VV (2018) CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS ONE 13(1):e0191838

    Article  PubMed  PubMed Central  Google Scholar 

  82. Parekh B (2015) QSAR Modeling for Drug Discovery and Development: Applications and Methodology. Int J Sci Res 4(1):329–331

    Google Scholar 

  83. Okamoto M, Kojima H, Saito N, Okabe T, Masuda Y, Furuya T, Nagano T (2011) Virtual screening and further development of novel ALK inhibitors. Bioorg Med Chem 19(10):3086–3095

    Article  PubMed  CAS  Google Scholar 

  84. Yap CW (2011) PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comp Chem 32(7):1466–1474

    Article  CAS  Google Scholar 

  85. Liu P, Long W (2009) Current mathematical methods used in QSAR/QSPR studies. Int J Mol Sci 10:1978–1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hadni H, Elhallaoui M (2020) 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon 6(4):e03580

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bewick V, Cheek L, Ball J (2003) Statistics review 7: Correlation and regression. Crit Care 7(6):451–459

    Article  PubMed  PubMed Central  Google Scholar 

  88. Beglari M, Goudarzi N, Shahsavani D, Arab Chamjangali M, Mozafari Z (2020) Combination of radial distribution functions as structural descriptors with ligand-receptor interaction information in the QSAR study of some 4-anilinoquinazoline derivatives as potent EGFR inhibitors. Struct Chem 31:1481–1491

    Article  CAS  Google Scholar 

  89. Bitam S, Hamadache M, Salah H (2020) 2D QSAR studies on a series of (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one as CETP inhibitors. SAR QSAR Environ Res 31(6):423–438

    Article  PubMed  CAS  Google Scholar 

  90. Pinzi L, Rastelli G (2019) Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci 20(18):44331

    Article  Google Scholar 

  91. Yuan M, Huang LL, Chen JH, Wu J, Xu Q (2019) The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Sig Transduct Target Ther 4(1):1–4

    Article  Google Scholar 

  92. Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N, Kuckovic A, Singh S, Miller RJ, Puri N (2018) Current molecular-targeted therapies in NSCLC and their mechanism of resistance. Cancers 10(7):224

    Article  PubMed Central  Google Scholar 

  93. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Biovia DS (2015) Discovery studio visualizer, v16.1.0.15350. San Diego: Dassault Systèmes

  95. Karpagakalyaani G, Magdaline JD, Chithambarathanu T, Aruldhas D, Anuf AR (2020) Spectroscopic (FT-IR, FT-Raman, NBO) Investigation and Molecular Docking study of a Herbicide compound Bifenox. Chem Data Collect 27:100393

    Article  CAS  Google Scholar 

  96. Schuèttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60(8):1355–1363

    Article  Google Scholar 

  97. Qureshi R, Zhu M, Yan H (2021) Visualization of Protein-Drug Interactions for the Analysis of Drug Resistance in Lung Cancer. IEEE J Biomed Health Inform 25(5):1839–1848

    Article  PubMed  Google Scholar 

  98. Ahmad S, Raza S, Uddin R, Azam SS (2017) Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. J Mol Graph Model 77:72–85

    Article  PubMed  CAS  Google Scholar 

  99. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, Beck G, Sherborne B, Cooper I, Platts JA (2001) Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci 90(6):749–784

    Article  PubMed  CAS  Google Scholar 

  100. Mishra S, Dahima R (2019) In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. J Drug Deliv Ther 9(2-s):366–369

  101. Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG (2018) Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 8(1):1–8

    Article  Google Scholar 

  102. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  PubMed  CAS  Google Scholar 

  103. Rothwell JA, Day AJ, Morgan MR (2005) Experimental determination of octanol− water partition coefficients of quercetin and related flavonoids. J Agric Food Chem 53(11):4355–4360

    Article  PubMed  CAS  Google Scholar 

  104. Nabati M, Bodaghi-Namileh V (2020) Evaluation of Medicinal Effects of Isoxazole Ring Isosteres on Zonisamide for Autism Treatment by Binding to Potassium Voltage-Gated Channel Subfamily D Member 2 (Kv 4.2). Adv J Chem A 3(4):462–472

  105. Begum AR, Begum S, Prasad KV, Bharathi K (2017) In silico studies on functionalized azaglycine derivatives containing 2, 4-thiazolidinedione scaffold on multiple targets. Int J Pharm Pharm Sci 9(8):209–215

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by CSIR-JRF (CSIR File. No: 08/1278(0001/2019-EMR-I). Author Kirishnamaline Gomathishankkar has received research support from CSIR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Kirishnamaline Gomathishankkar. The first draft of the manuscript was written by Kirishnamaline Gomathishankkar, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daisy Magdaline Joseph Yesudian.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomathishankkar, K., Joseph Yesudian, D.M., Thiraviam, C. et al. Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents. Struct Chem 33, 2083–2113 (2022). https://doi.org/10.1007/s11224-022-01968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01968-2

Keywords

Navigation