Skip to main content
Log in

Theoretical estimation of the electron affinity for quinone derivatives by means of density functional theory

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A number of compounds related to quinone derivatives is investigated by means of density functional theory in the B3LYP/6-31G(d) mode. Vertical electron affinity E va and/or electron affinity E a for the investigated compounds are known from experiments. The correlation between the calculated energies of π* molecular orbitals with the E va values measured via electron transmission spectroscopy is determined with a coefficient of 0.96. It is established that theoretical values of the adiabatic electron affinity, calculated as the difference between the total energies of a neutral molecule and a radical anion, correlate with E a values determined from electron transfer experiments with a correlation coefficient of 0.996.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. El. Najjar, H. Gali-Muhtasib, R. A. Ketola, et al., Phytochem. Rev., No. 10, 353 (2011).

    Google Scholar 

  2. D. V. Berdyshev, V. P. Glazunov, and V. L. Novikov, Russ. Chem. Bull. 56, 413 (2007).

    Article  CAS  Google Scholar 

  3. E. Vessally, E. Fereyduni, M. Kamaee, and S. Moradi, J. Serb. Chem. Soc., No. 76, 879 (2011).

    Google Scholar 

  4. A. G. M. Tielens, C. Rotte, J. J. van Hellemond, and W. Martin, Trends Biochem. Sci., No. 27, 564 (2002).

    Google Scholar 

  5. F. A. de Lima Ribeiro and M. M. C. Ferreira, J. Mol. Struct: THEOCHEM, No. 719, 191 (2005).

    Google Scholar 

  6. E. Illenberger and J. Momigny, Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization (Steinkopff Verlag Darmstadt, Springer, New York, 1992).

    Google Scholar 

  7. V. I. Khvostenko, Mass-Spectrometry of Negative Ions in Organic Chemistry (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  8. R. R. Corderman and W. C. Lineberger, Ann. Rev. Phys. Chem., No. 30, 347 (1979).

    Google Scholar 

  9. P. Kebarle and S. Chowdhury, Chem. Rev., No. 7, 513 (1987).

    Google Scholar 

  10. G. J. Schulz, Rev. Mod. Phys., No. 45, 378 (1973).

    Google Scholar 

  11. K. D. Jordan and P. D. Burrow, Chem. Rev. 87, 557 (1987).

    Article  CAS  Google Scholar 

  12. S. S. Staley and J. T. Strnad, J. Phys. Chem. 98, 116 (1994).

    Article  CAS  Google Scholar 

  13. P. D. Burrow and A. Modelli, SAR QSAR Environ. Res. 24, 647 (2013).

    Article  CAS  Google Scholar 

  14. A. M. Scheer and P. D. Burrow, J. Phys. Chem. B 110, 17751 (2006).

    Article  CAS  Google Scholar 

  15. A. Modelli, Phys. Chem. Chem. Phys., No. 5, 2923 (2003).

    Google Scholar 

  16. A. Modelli and L. Mussoni, Chem. Phys. 332, 367 (2007).

    Article  CAS  Google Scholar 

  17. T. Koopmans, Phys. Amsterdam, No. 1, 104 (1934).

    Google Scholar 

  18. J. M. Younkin, L. J. Smith, and R. N. Compton, Theor. Chim. Acta, No. 41, 157 (1976).

    Google Scholar 

  19. D. A. Chen and G. A. Gallup, J. Chem. Phys. 93, 8893 (1990).

    Article  CAS  Google Scholar 

  20. K. Aflatooni, B. Hitt, G. A. Gallup, and P. D. Burrow, J. Chem. Phys. 115, 6489 (2001).

    Article  CAS  Google Scholar 

  21. K. Aflatooni, G. A. Gallup, and P. D. Burrow, J. Phys. Chem. A 106, 4703 (2002).

    Article  CAS  Google Scholar 

  22. A. Modelli and L. Szepes, Chem. Phys. 286, 165 (2003).

    Article  CAS  Google Scholar 

  23. A. Modelli, L. Mussoni, and D. Fabbri, J. Phys. Chem. A 110, 6482 (2006).

    Article  CAS  Google Scholar 

  24. J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer III, et al., Chem. Rev. 102, 231 (2002).

    Article  CAS  Google Scholar 

  25. X.-Q. Zhu and Ch.-H. Wang, J. Org. Chem. 75, 5037 (2010).

    Article  CAS  Google Scholar 

  26. A. Modelli, B. Hajgato, J. F. Nixon, and L. Nyulaszi, J. Phys. Chem. A 108, 7440 (2004).

    Article  CAS  Google Scholar 

  27. A. Modelli, L. Mussoni, and D. Fabbri, J. Phys. Chem. A 110, 6482 (2006).

    Article  CAS  Google Scholar 

  28. S. Chowdhury, T. Heinis, E. P. Grimsrud, and P. Kebarle, J. Phys. Chem. 90, 2747 (1986).

    Article  CAS  Google Scholar 

  29. T. Heinis, S. Chowdhury, and S. L. Scott, J. Am. Chem. Soc. 110, 400 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Kalimullina.

Additional information

Original Russian Text © L.R. Kalimullina, E.P. Nafikova, N.L. Asfandiarov, Yu.V. Chizhov, G.Sh. Baibulova, E.R. Zhdanov, R.M. Gadiev, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 3, pp. 426–432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalimullina, L.R., Nafikova, E.P., Asfandiarov, N.L. et al. Theoretical estimation of the electron affinity for quinone derivatives by means of density functional theory. Russ. J. Phys. Chem. 89, 429–435 (2015). https://doi.org/10.1134/S0036024415030152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415030152

Keywords

Navigation