Skip to main content
Log in

Metal oxide ion-gated transistors: A perspective on in operando characterizations and emerging Li-ion-based applications

  • MRS 50th Anniversary Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this Prospective, we discuss how ionic media interfaced to metal oxide (MO) semiconducting thin films can modulate their electronic conductivity. From in situ diagnosis tools to monitor the state-of-health of Li-ion batteries, to synaptic transistors where ion diffusive dynamics governs short-term and long-term plasticity, technologies based on ionic medium/MO interfaces are emerging, strongly benefitting from advanced nanoscale resolved scanning probe techniques and computational chemistry.

Graphical abstract

Schematic representations of ion-gated transistors (IGT) making use of a metal oxide as semiconductor channel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. (2016). https://doi.org/10.1038/nmat4599

    Article  Google Scholar 

  2. W. Xu, H. Li, J.-B. Xu, L. Wang, ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b16010

    Article  Google Scholar 

  3. Y. Yoon, P.L. Truong, D. Lee, S.H. Ko, ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.1c00029

    Article  Google Scholar 

  4. M.R.S. da Pelissari, N.F. Azevedo Neto, L.P. Camargo, L.H. Dall’Antonia, Electrocatalysis (2021). https://doi.org/10.1007/s12678-021-00641-2

    Article  Google Scholar 

  5. L.P. Camargo, A.C. Lucilha, G.A.B. Gomes, V.R. Liberatti, A.C. Andrello, P.R.C. da Silva, L.H. Dall’Antonia, J. Solid State Electrochem. (2020). https://doi.org/10.1007/s10008-020-04721-z

    Article  Google Scholar 

  6. A. Vali, H.P. Sarker, H. Jee, A. Kormányos, F. Firouzan, N. Myung, K. Paeng, M.N. Huda, C. Janáky, K. Rajeshwar, ChemPhysChem (2019). https://doi.org/10.1002/cphc.201900558

    Article  Google Scholar 

  7. M.M. Emara, S.M. Reda, M.A. El-Naggar, M.A. Mousa, J. Nanopart. Res. (2022). https://doi.org/10.1007/s11051-022-05607-z

    Article  Google Scholar 

  8. L.T. Silvano, M.V. Folgueras, E.C.F. De Souza, J. Aust. Ceram. Soc. (2023). https://doi.org/10.1007/s41779-023-00891-x

    Article  Google Scholar 

  9. L.P. Camargo, M.R. da Silva Pelissari, P.R.C. da Silva, A. Batagin-Neto, R.A. Medeiros, M.A. Dias, L.H. Dall’Antonia, Molecules (2022). https://doi.org/10.3390/molecules27196410

    Article  Google Scholar 

  10. G.A.H. Mekhemer, H.A.A. Mohamed, A. Bumajdad, M.I. Zaki, Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-34065-3

    Article  Google Scholar 

  11. S. Stankic, S. Suman, F. Haque, J. Vidic, J. Nanobiotechnol. (2016). https://doi.org/10.1186/s12951-016-0225-6

    Article  Google Scholar 

  12. S. Kumar, S. Saralch, U. Jabeen, D. Pathak, Colloidal Metal Oxide Nanoparticles (Elsevier, Amsterdam, 2020), pp.471–504

    Book  Google Scholar 

  13. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. (2018). https://doi.org/10.1186/s12951-018-0408-4

    Article  Google Scholar 

  14. N. Vijayakumar, S.K. Venkatraman, S. Imthiaz, E.A. Drweesh, M.M. Elnagar, S. Koppala, S. Swamiappan, Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-30013-3

    Article  Google Scholar 

  15. F. Gunkel, D.V. Christensen, Y.Z. Chen, N. Pryds, Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5143309

    Article  Google Scholar 

  16. J. de Rojas, A. Quintana, G. Rius, C. Stefani, N. Domingo, J.L. Costa-Krämer, E. Menéndez, J. Sort, Appl. Phys. Lett. (2022). https://doi.org/10.1063/5.0079762

    Article  Google Scholar 

  17. L. Li, M. Hu, C. Hu, B. Li, S. Zhao, T. Zhou, J. Zhu, M. Liu, L. Li, J. Jiang, C. Zou, Nano Lett. (2023). https://doi.org/10.1021/acs.nanolett.3c01139

    Article  Google Scholar 

  18. Y.S. Rim, J. Inf. Disp. (2020). https://doi.org/10.1080/15980316.2020.1714762

    Article  Google Scholar 

  19. J. Kim, Y.S. Rim, H. Chen, H.H. Cao, N. Nakatsuka, H.L. Hinton, C. Zhao, A.M. Andrews, Y. Yang, P.S. Weiss, ACS Nano (2015). https://doi.org/10.1021/acsnano.5b01211

    Article  Google Scholar 

  20. H.-T. Zhang, Z. Zhang, H. Zhou, H. Tanaka, D.D. Fong, S. Ramanathan, Adv. Phys. X (2019). https://doi.org/10.1080/23746149.2018.1523686

    Article  Google Scholar 

  21. C. Leighton, Nat. Mater. (2019). https://doi.org/10.1038/s41563-018-0246-7

    Article  Google Scholar 

  22. H. Ling, D.A. Koutsouras, S. Kazemzadeh, Y. van de Burgt, F. Yan, P. Gkoupidenis, Appl. Phys. Rev. (2020). https://doi.org/10.1063/1.5122249

    Article  Google Scholar 

  23. A. Sood, A.D. Poletayev, D.A. Cogswell, P.M. Csernica, J.T. Mefford, D. Fraggedakis, M.F. Toney, A.M. Lindenberg, M.Z. Bazant, W.C. Chueh, Nat. Rev. Mater. (2021). https://doi.org/10.1038/s41578-021-00314-y

    Article  Google Scholar 

  24. D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li, K. Li, S. Wang, Q. Yu, M. Liu, S. Ganapathy, X. Qin, Q. Yang, M. Wagemaker, F. Kang, X. Yang, B. Li, Adv. Mater. (2019). https://doi.org/10.1002/adma.201806620

    Article  Google Scholar 

  25. C. Leighton, T. Birol, J. Walter, APL Mater. (2022). https://doi.org/10.1063/5.0087396

    Article  Google Scholar 

  26. T. Miao, B. Cui, C. Huang, D. Wang, L. Liu, W. Liu, Y. Li, R. Chu, X. Ren, L. Liu, B. Cheng, G. Zhou, H. Qin, G. Xing, J. Hu, Adv. Intell. Syst. (2023). https://doi.org/10.1002/aisy.202200287

    Article  Google Scholar 

  27. J. Jeong, N. Aetukuri, T. Graf, T.D. Schladt, M.G. Samant, S.S.P. Parkin, Science (80-) (2013). https://doi.org/10.1126/science.1230512

    Article  Google Scholar 

  28. T. Lan, F. Soavi, M. Marcaccio, P.-L. Brunner, J. Sayago, C. Santato, Chem. Commun. (2018). https://doi.org/10.1039/C8CC03090A

    Article  Google Scholar 

  29. X. Meng, F. Quenneville, F. Venne, E. Di Mauro, D. Işık, M. Barbosa, Y. Drolet, M.M. Natile, D. Rochefort, F. Soavi, C. Santato, J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b06777

    Article  Google Scholar 

  30. M.S. Barbosa, N. Balke, W.-Y. Tsai, C. Santato, M.O. Orlandi, J. Phys. Chem. Lett. (2020). https://doi.org/10.1021/acs.jpclett.0c00651

    Article  Google Scholar 

  31. R. Karimi Azari, T. Lan, C. Santato, J. Mater. Chem. C (2023). https://doi.org/10.1039/D3TC00161J

    Article  Google Scholar 

  32. M. Mastragostino, F. Soavi, ChemElectroChem (2021). https://doi.org/10.1002/celc.202100457

    Article  Google Scholar 

  33. F. Poli, J.R. Herrera, T. Lan, P. Kumar, C. Santato, F. Soavi, IScience (2023). https://doi.org/10.1016/j.isci.2022.105888

    Article  Google Scholar 

  34. M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. (2011). https://doi.org/10.1038/nmat3011

    Article  Google Scholar 

  35. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  Google Scholar 

  36. Z. Yin, S. Li, X. Li, W. Shi, W. Liu, Z. Gao, M. Tao, C. Ma, Y. Liu, RSC Adv. (2023). https://doi.org/10.1039/D2RA07936D

    Article  Google Scholar 

  37. A.C. Lucilha, L.P. Camargo, V.R. Liberatti, E.C.M. Barbosa, L.H. Dall’Antonia, Colloids Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2022.128261

    Article  Google Scholar 

  38. H.A. Khizir, T.A.-H. Abbas, Sens. Actuators A (2022). https://doi.org/10.1016/j.sna.2021.113231

    Article  Google Scholar 

  39. A.A. Ashkarran, A. Iraji zad, M.M. Ahadian, S.A. Mahdavi Ardakani, Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/19/195709

    Article  Google Scholar 

  40. A. Roy, S. Bhandari, A. Ghosh, S. Sundaram, T.K. Mallick, J. Phys. Chem. A (2020). https://doi.org/10.1021/acs.jpca.0c02912

    Article  Google Scholar 

  41. N.A. Sirotkin, A.V. Khlyustova, V.A. Titov, A.S. Krayev, D.I. Nikitin, O.A. Dmitrieva, A.V. Agafonov, Plasma Chem. Plasma Process. (2020). https://doi.org/10.1007/s11090-019-10048-z

    Article  Google Scholar 

  42. X. Yu, J. Smith, N. Zhou, L. Zeng, P. Guo, Y. Xia, A. Alvarez, S. Aghion, H. Lin, J. Yu, R.P.H. Chang, M.J. Bedzyk, R. Ferragut, T.J. Marks, A. Facchetti, Proc. Natl Acad. Sci. USA (2015). https://doi.org/10.1073/pnas.1501548112

    Article  Google Scholar 

  43. G. Adamopoulos, A. Bashir, W.P. Gillin, S. Georgakopoulos, M. Shkunov, M.A. Baklar, N. Stingelin, D.D.C. Bradley, T.D. Anthopoulos, Adv. Funct. Mater. (2011). https://doi.org/10.1002/adfm.201001089

    Article  Google Scholar 

  44. Y.H. Kang, S. Jeong, J.M. Ko, J.-Y. Lee, Y. Choi, C. Lee, S.Y. Cho, J. Mater. Chem. C (2014). https://doi.org/10.1039/C4TC00139G

    Article  Google Scholar 

  45. M.-G. Kim, J.W. Hennek, H.S. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. (2012). https://doi.org/10.1021/ja301941q

    Article  Google Scholar 

  46. K. Hong, S.H. Kim, K.H. Lee, C.D. Frisbie, Adv. Mater. (2013). https://doi.org/10.1002/adma.201300211

    Article  Google Scholar 

  47. I. Valitova, M.M. Natile, F. Soavi, C. Santato, F. Cicoira, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b09912

    Article  Google Scholar 

  48. A. Subramanian, M. Azimi, C. Santato, F. Cicoira, Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202100843

    Article  Google Scholar 

  49. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature (2004). https://doi.org/10.1038/nature03090

    Article  Google Scholar 

  50. A. Subramanian, M. Azimi, C.Y. Leong, S.L. Lee, C. Santato, F. Cicoira, Front. Electron. (2022). https://doi.org/10.3389/felec.2022.813535

    Article  Google Scholar 

  51. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-Zadeh, Adv. Funct. Mater. (2011). https://doi.org/10.1002/adfm.201002477

    Article  Google Scholar 

  52. M.S. Barbosa, F.M.B. Oliveira, X. Meng, F. Soavi, C. Santato, M.O. Orlandi, J. Mater. Chem. C (2018). https://doi.org/10.1039/C7TC04529H

    Article  Google Scholar 

  53. S.H. Gebre, J. Clust. Sci. (2023). https://doi.org/10.1007/s10876-022-02276-9

    Article  Google Scholar 

  54. D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, D.U. Sauer, J. Power Sources (2011). https://doi.org/10.1016/j.jpowsour.2010.12.102

    Article  Google Scholar 

  55. R. Amin, Y.-M. Chiang, J. Electrochem. Soc. (2016). https://doi.org/10.1149/2.0131608jes

    Article  Google Scholar 

  56. M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, Chem. Mater. (2006). https://doi.org/10.1021/cm060729s

    Article  Google Scholar 

  57. D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth, D.U. Sauer, J. Power Sources (2011). https://doi.org/10.1016/j.jpowsour.2010.07.071

    Article  Google Scholar 

  58. S.Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa, Adv. Mater. (2017). https://doi.org/10.1002/adma.201607054

    Article  Google Scholar 

  59. H. Li, S. Guo, H. Zhou, J. Energy Chem. (2021). https://doi.org/10.1016/j.jechem.2020.11.020

    Article  Google Scholar 

  60. M. Golozar, R. Gauvin, K. Zaghib, Inorganics (2021). https://doi.org/10.3390/inorganics9110085

    Article  Google Scholar 

  61. Q. Gao, W. Tsai, N. Balke, Electrochem. Sci. Adv. (2022). https://doi.org/10.1002/elsa.202100038

    Article  Google Scholar 

  62. N. Hodnik, G. Dehm, K.J.J. Mayrhofer, Acc. Chem. Res. (2016). https://doi.org/10.1021/acs.accounts.6b00330

    Article  Google Scholar 

  63. C. Han, M.T. Islam, C. Ni, ACS Omega (2021). https://doi.org/10.1021/acsomega.0c05829

    Article  Google Scholar 

  64. S.-M. Bak, Z. Shadike, R. Lin, X. Yu, X.-Q. Yang, NPG Asia Mater. (2018). https://doi.org/10.1038/s41427-018-0056-z

    Article  Google Scholar 

  65. P. Ghigna, E. Quartarone, J. Phys. Energy (2021). https://doi.org/10.1088/2515-7655/abf2db

    Article  Google Scholar 

  66. S. Wi, V. Shutthanandan, B.M. Sivakumar, S. Thevuthasan, V. Prabhakaran, S. Roy, A. Karakoti, V. Murugesan, J. Vac. Sci. Technol. A (2022). https://doi.org/10.1116/6.0001460

    Article  Google Scholar 

  67. V. Shutthanandan, M. Nandasiri, J. Zheng, M.H. Engelhard, W. Xu, S. Thevuthasan, V. Murugesan, J. Electron Spectrosc. Relat. Phenom. (2019). https://doi.org/10.1016/j.elspec.2018.05.005

    Article  Google Scholar 

  68. L. Kornblum, Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201900480

    Article  Google Scholar 

  69. B. Cui, P. Werner, T. Ma, X. Zhong, Z. Wang, J.M. Taylor, Y. Zhuang, S.S.P. Parkin, Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-05330-1

    Article  Google Scholar 

  70. D. Song, D. Xue, S. Zeng, C. Li, T. Venkatesan, A. Ariando, S.J. Pennycook, Adv. Sci. (2020). https://doi.org/10.1002/advs.202000729

    Article  Google Scholar 

  71. M.S. Saleem, B. Cui, C. Song, Y. Sun, Y. Gu, R. Zhang, M.U. Fayaz, X. Zhou, P. Werner, S.S.P. Parkin, F. Pan, ACS Appl. Mater. Interfaces (2019). https://doi.org/10.1021/acsami.8b18251

    Article  Google Scholar 

  72. L. Fan, Y. Zhu, Z. Wang, S. Zhao, Z. Liu, L. Zhu, X. Wang, Q. Zhang, Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5128278

    Article  Google Scholar 

  73. H. Wang, W.M. Postiglione, V. Chaturvedi, E.L. Runnerstrom, A. Cleri, J. Nordlander, J.-P. Maria, C. Leighton, APL Mater. (2022). https://doi.org/10.1063/5.0116294

    Article  Google Scholar 

  74. S.G. Altendorf, J. Jeong, D. Passarello, N.B. Aetukuri, M.G. Samant, S.S.P. Parkin, Adv. Mater. (2016). https://doi.org/10.1002/adma.201505631

    Article  Google Scholar 

  75. N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H.-B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C.-W. Nan, J. Wu, Y. Tokura, P. Yu, Nature (2017). https://doi.org/10.1038/nature22389

    Article  Google Scholar 

  76. V. Chaturvedi, W.M. Postiglione, R.D. Chakraborty, B. Yu, W. Tabiś, S. Hameed, N. Biniskos, A. Jacobson, Z. Zhang, H. Zhou, M. Greven, V.E. Ferry, C. Leighton, ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c13828

    Article  Google Scholar 

  77. Q. Lu, B. Yildiz, Nano Lett. (2016). https://doi.org/10.1021/acs.nanolett.5b04492

    Article  Google Scholar 

  78. Q. Lu, S.R. Bishop, D. Lee, S. Lee, H. Bluhm, H.L. Tuller, H.N. Lee, B. Yildiz, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201803024

    Article  Google Scholar 

  79. G.V. De Oliveira Silva, A. Subramanian, X. Meng, S. Zhang, M.S. Barbosa, B. Baloukas, D. Chartrand, J.C. Gonzáles, M.O. Orlandi, F. Soavi, F. Cicoira, C. Santato, J. Phys. D (2019). https://doi.org/10.1088/1361-6463/ab1dbb

    Article  Google Scholar 

  80. T. Onozato, Y. Nezu, H.J. Cho, H. Ohta, AIP Adv. (2019). https://doi.org/10.1063/1.5089604

    Article  Google Scholar 

  81. C. Yang, D. Shang, N. Liu, E.J. Fuller, S. Agrawal, A.A. Talin, Y. Li, B. Shen, Y. Sun, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201804170

    Article  Google Scholar 

  82. A. Subramanian, B. George, S.R. Bobbara, I. Valitova, I. Ruggeri, F. Borghi, A. Podestà, P. Milani, F. Soavi, C. Santato, F. Cicoira, AIP Adv. (2020). https://doi.org/10.1063/5.0009984

    Article  Google Scholar 

  83. C. Ge, G. Li, Q. Zhou, J. Du, E. Guo, M. He, C. Wang, G. Yang, K. Jin, Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104268

    Article  Google Scholar 

  84. M. Wang, S. Shen, J. Ni, N. Lu, Z. Li, H. Li, S. Yang, T. Chen, J. Guo, Y. Wang, H. Xiang, P. Yu, Adv. Mater. (2017). https://doi.org/10.1002/adma.201703628

    Article  Google Scholar 

  85. L. Li, M. Wang, Y. Zhou, Y. Zhang, F. Zhang, Y. Wu, Y. Wang, Y. Lyu, N. Lu, G. Wang, H. Peng, S. Shen, Y. Du, Z. Zhu, C.-W. Nan, P. Yu, Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01373-4

    Article  Google Scholar 

  86. S. Nishihaya, M. Uchida, Y. Kozuka, Y. Iwasa, M. Kawasaki, S. Nishihaya, M. Uchida, Y. Kozuka, Y. Iwasa, M. Kawasaki, Y. Iwasa, M. Kawasaki, ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b06593

    Article  Google Scholar 

  87. X. Leng, J. Pereiro, J. Strle, G. Dubuis, A.T. Bollinger, A. Gozar, J. Wu, N. Litombe, C. Panagopoulos, D. Pavuna, I. Božović, NPJ Quantum Mater. (2017). https://doi.org/10.1038/s41535-017-0039-2

    Article  Google Scholar 

  88. J. Jeong, N.B. Aetukuri, D. Passarello, S.D. Conradson, M.G. Samant, S.S.P. Parkin, Proc. Natl Acad. Sci. USA (2015). https://doi.org/10.1073/pnas.1419051112

    Article  Google Scholar 

  89. M.A. Hope, K.J. Griffith, B. Cui, F. Gao, S.E. Dutton, S.S.P. Parkin, C.P. Grey, J. Am. Chem. Soc. (2018). https://doi.org/10.1021/jacs.8b09513

    Article  Google Scholar 

  90. H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, Y. Iwasa, J. Am. Chem. Soc. (2010). https://doi.org/10.1021/ja108912x

    Article  Google Scholar 

  91. J.M. Black, J. Come, S. Bi, M. Zhu, W. Zhao, A.T. Wong, J.H. Noh, P.R. Pudasaini, P. Zhang, M.B. Okatan, S. Dai, S.V. Kalinin, P.D. Rack, T.Z. Ward, G. Feng, N. Balke, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b11044

    Article  Google Scholar 

  92. A. Uysal, H. Zhou, G. Feng, S.S. Lee, S. Li, P. Fenter, P.T. Cummings, P.F. Fulvio, S. Dai, J.K. McDonough, Y. Gogotsi, J. Phys. Chem. C (2014). https://doi.org/10.1021/jp4111025

    Article  Google Scholar 

  93. J.M. Black, M. Baris Okatan, G. Feng, P.T. Cummings, S.V. Kalinin, N. Balke, Nano Energy (2015). https://doi.org/10.1016/j.nanoen.2015.05.037

    Article  Google Scholar 

  94. X. Zhang, Y.-X. Zhong, J.-W. Yan, Y.-Z. Su, M. Zhang, B.-W. Mao, Chem. Commun. (2012). https://doi.org/10.1039/C1CC15463J

    Article  Google Scholar 

  95. F. Endres, N. Borisenko, S.Z. El Abedin, R. Hayes, R. Atkin, Faraday Discuss. (2012). https://doi.org/10.1039/C1FD00050K

    Article  Google Scholar 

  96. Z. Chen, Z. Li, W. Zhao, R.A. Matsumoto, M.W. Thompson, O. Morales-Collazo, P.T. Cummings, F. Mangolini, J.F. Brennecke, Langmuir (2022). https://doi.org/10.1021/acs.langmuir.2c00024

    Article  Google Scholar 

  97. R. An, A. Laaksonen, M. Wu, Y. Zhu, F.U. Shah, X. Lu, X. Ji, Nanoscale (2022). https://doi.org/10.1039/D2NR02812C

    Article  Google Scholar 

  98. R. An, Y. Wei, X. Qiu, Z. Dai, M. Wu, E. Gnecco, F.U. Shah, W. Zhang, Friction (2022). https://doi.org/10.1007/s40544-021-0566-5

    Article  Google Scholar 

  99. S.P. Ong, O. Andreussi, Y. Wu, N. Marzari, G. Ceder, Chem. Mater. (2011). https://doi.org/10.1021/cm200679y

    Article  Google Scholar 

  100. W.-Y. Tsai, J. Come, W. Zhao, R. Wang, G. Feng, B. Prasad Thapaliya, S. Dai, L. Collins, N. Balke, Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.04.022

    Article  Google Scholar 

  101. H. Zhang, M. Zhu, W. Zhao, S. Li, G. Feng, Green Energy Environ. (2018). https://doi.org/10.1016/j.gee.2017.11.002

    Article  Google Scholar 

  102. M. Bursch, J. Mewes, A. Hansen, S. Grimme, Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202205735

    Article  Google Scholar 

  103. N. Ye, Z. Yang, Y. Liu, Drug Discov. Today (2022). https://doi.org/10.1016/j.drudis.2021.12.017

    Article  Google Scholar 

  104. S. Malali, M. Foroutan, J. Phys. Chem. C (2017). https://doi.org/10.1021/acs.jpcc.6b12065

    Article  Google Scholar 

  105. S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthélémy, S. Saïghi, V. Garcia, Nat. Commun. (2017). https://doi.org/10.1038/ncomms14736

    Article  Google Scholar 

  106. J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu, Z.U. Rehman, L. Bao, X. Zhang, Y. Cai, L. Song, R. Huang, Adv. Mater. (2018). https://doi.org/10.1002/adma.201800195

    Article  Google Scholar 

  107. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. (2013). https://doi.org/10.1038/nnano.2012.240

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from Institut Trottier de l’Energie (‘‘In situ diagnosis tools for lithium ion batteries’’, appel à projets 2020). Luan P. Camargo and Lariel C. S. Neres would like to thank the Emerging Leaders of Americas Program (ELAP) Scholarship provided with the support of Global Affairs Canada and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Brazil) for the Doctorate Scholarship (Edital 44/2022-PROPG). José R. Herrera Garza thanks the National Council for the Humanities, Sciences and Technologies (CONAHCYT), Grant 739478. Francesca Soavi thanks the Italian MUR (Fondi PNRR-CNMS-Spoke 13-MOST Code: CN00000023) for financial support. Also, we thankfully acknowledge Professor Ph.D. Luiz Henrique Dall’Antonia (State University of Londrina, Londrina—Brazil) for the discussion regarding the metal oxide synthesis procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Santato.

Ethics declarations

Conflict of interest

The authors have no financial or competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Neres, L.C., Camargo, L.P., Azari, R.K. et al. Metal oxide ion-gated transistors: A perspective on in operando characterizations and emerging Li-ion-based applications. MRS Communications 13, 695–703 (2023). https://doi.org/10.1557/s43579-023-00437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00437-z

Keywords

Navigation