Skip to main content
Log in

Metal oxide ion gated transistors based sensors

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Metal oxide ion-gated transistors (MOIGTs) have garnered significant attention within the sensing domain due to their potential for achieving heightened sensitivity while consuming minimal energy across diverse scenarios. By harnessing the advantageous combination of metal oxides’ high carrier mobility and facile surface customization, coupled with the potent signal amplification capabilities of ion-gated transistors, MOIGTs offer a promising avenue for discerning biomolecules, overseeing chemical reactions, pH levels, as well as facilitating gas or light determination. Over the past few decades, the MOIGT field has made remarkable strides in refining device physics, enhancing material properties, showcasing robust sensing capabilities, and broadening its application spectrum. These advancements have simultaneously unveiled new challenges and opportunities, necessitating interdisciplinary expertise to fully unlock the commercial potential of MOIGTs. In this comprehensive review, we offer a snapshot of this swiftly evolving technology, delve into its current applications, and provide insightful recommendations for future directions in the coming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moin A, Zhou A, Rahimi A, et al. Awearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat Electron, 2021, 4: 54–63

    Article  Google Scholar 

  2. Liao F, Zhou Z, Kim B J, et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat Electron, 2022, 5: 84–91

    Article  Google Scholar 

  3. Ates H C, Nguyen P Q, Gonzalez-Macia L, et al. End-to-end design of wearable sensors. Nat Rev Mater, 2022, 7: 887–907

    Article  Google Scholar 

  4. Duan S, Wang J, Lin Y, et al. Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications. Nano Res, 2023, 16: 5480–5489

    Article  Google Scholar 

  5. Li J, Li Y, He L, et al. Spatio-temporal fusion for remote sensing data: An overview and new benchmark. Sci China Inf Sci, 2020, 63: 140301

    Article  MathSciNet  Google Scholar 

  6. Hwang M T, Heiranian M, Kim Y, et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat Commun, 2020, 11: 1543

    Article  Google Scholar 

  7. Ohayon D, Nikiforidis G, Savva A, et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat Mater, 2020, 19: 456–463

    Article  Google Scholar 

  8. Zhong J, Li Z, Takakuwa M, et al. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv Mater, 2022, 34: 2107758

    Article  Google Scholar 

  9. Rim Y S. Review of metal oxide semiconductors-based thin-film transistors for point-of-care sensor applications. J Inf Display, 2020, 21: 203–210

    Article  Google Scholar 

  10. Khim D, Lin Y, Anthopoulos T D. Impact of layer configuration and doping on electron transport and bias stability in heterojunction and superlattice metal oxide transistors. Adv Funct Mater, 2019, 29: 1902591

    Article  Google Scholar 

  11. Sedki M, Shen Y, Mulchandani A. Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosens Bioelectron, 2021, 176: 112941

    Article  Google Scholar 

  12. Ning H, Yu Z, Li T, et al. From lab to fab: Path forward for 2D material electronics. Sci China Inf Sci, 2023, 66: 160411

    Article  Google Scholar 

  13. Zheng B, Huo L. Recent advances of dithienobenzodithiophene-based organic semiconductors for organic electronics. Sci China Chem, 2021, 64: 358–384

    Article  Google Scholar 

  14. Cantarella G, Costa J, Meister T, et al. Review of recent trends in flexible metal oxide thin-film transistors for analog applications. Flex Print Electron, 2020, 5: 033001

    Article  Google Scholar 

  15. Park J W, Kang B H, Kim H J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv Funct Mater, 2020, 30: 1904632

    Article  Google Scholar 

  16. Carlos E, Leppäniemi J, Sneck A, et al. Printed, highly stable metal oxide thin-film transistors with ultra-thin high-κ oxide dielectric. Adv Elect Mater, 2020, 6: 1901071

    Article  Google Scholar 

  17. Kang Y, Lee W, Kim J, et al. Effects of crystalline structure of IGZO thin films on the electrical and photo-stability of metal-oxide thin-film transistors. Mater Res Bull, 2021, 139: 111252

    Article  Google Scholar 

  18. Bhalerao S R, Lupo D, Zangiabadi A, et al. 0.6 V threshold voltage thin film transistors with solution processable indium oxide (In2O3) channel and anodized high-κ Al2O3 dielectric. IEEE Elec Dev Lett, 2019, 40: 1112–1115

    Article  Google Scholar 

  19. Zhuo F, Wu J, Li B, et al. Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research, 2023, 6: 0057

    Article  Google Scholar 

  20. Guo S, Li S, Shen T, et al. Fröhlich polaron effect in flexible low-voltage organic thin-film transistors gated with high-κ polymer dielectrics. J Phys D-Appl Phys, 2021, 54: 444001

    Article  Google Scholar 

  21. Liu C, Wang Y, Zhang T, et al. An attention mechanism-based adaptive feedback computing component by neuromorphic ion gated MoS2 transistors. Adv Elect Mater, 2022, 9: 2201060

    Article  Google Scholar 

  22. Bu X, Xu H, Shang D, et al. Ion-gated transistor: An enabler for sensing and computing integration. Adv Intel Syst, 2020, 2: 2000156

    Article  Google Scholar 

  23. Wang D, Zhao S, Yin R, et al. Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex Electron, 2021, 5: 13

    Article  Google Scholar 

  24. Cho K G, Seol K H, Kim M S, et al. Tuning threshold voltage of electrolyte-gated transistors by binary ion doping. ACS Appl Mater Interfaces, 2022, 14: 50004–50012

    Article  Google Scholar 

  25. Guo L, Qin Y, Gu X, et al. Spin transport in organic molecules. Front Chem, 2019, 7: 428

    Article  Google Scholar 

  26. Xiao J, Zhan H, Wang X, et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat Nanotechnol, 2020, 15: 683–689

    Article  Google Scholar 

  27. Kang J, Jang Y, Moon S H, et al. Symmetrically ion-gated in-plane metal-oxide transistors for highly sensitive and low-voltage driven bioelectronics. Adv Sci, 2022, 9: 2103275

    Article  Google Scholar 

  28. Deng Y, Qi H, Ma Y, et al. A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proc Natl Acad Sci USA, 2022, 119: e2208060119

    Article  Google Scholar 

  29. Song J, Liu H, Zhao Z, et al. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci Adv, 2023, 9: eadd9627

    Article  Google Scholar 

  30. Chen S, Hou K, Li T, et al. Ultra-lightweight, highly permeable, and waterproof fibrous organic electrochemical transistors for on-skin bioelectronics. Adv Mater Tech, 2023, 8: 2200611

    Article  Google Scholar 

  31. Sun J, Deng Y, Jiang J, et al. Cationic effects on solid polymer electrolyte-gated organic transistors. Org Electron, 2022, 106: 106529

    Article  Google Scholar 

  32. Li Y, Lu J, Shang D, et al. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv Mater, 2020, 32: 2003018

    Article  Google Scholar 

  33. Wang X, Wei L, Mou P, et al. A printable GO-PVA composite dielectric for EDL gating of metal-oxide TFTs. Flex Print Electron, 2020, 5: 015002

    Article  Google Scholar 

  34. Rim Y S, Bae S H, Chen H, et al. Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano, 2015, 9: 12174–12181

    Article  Google Scholar 

  35. Liu Q, Zhao C, Chen M, et al. Flexible multiplexed In2O3 nanoribbon aptamer-field-effect transistors for biosensing. iScience, 2020, 23: 101469

    Article  Google Scholar 

  36. Liu Q, Liu Y, Wu F, et al. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano, 2018, 12: 1170–1178

    Article  Google Scholar 

  37. Al Baroot A F, Grell M. Comparing electron- and hole transporting semiconductors in ion sensitive water-gated transistors. Mater Sci Semicond Proc, 2019, 89: 216–222

    Article  Google Scholar 

  38. Bhatt D, Kumar S, Panda S. Amorphous IGZO field effect transistor based flexible chemical and biosensors for label free detection. Flex Print Electron, 2020, 5: 014010

    Article  Google Scholar 

  39. Ersöz B, Schmitt K, Wöllenstein J. Electrolyte-gated transistor for CO2 gas detection at room temperature. Sens Actuat B-Chem, 2020, 317: 128201

    Article  Google Scholar 

  40. Kim T S, Lee Y, Xu W, et al. Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy, 2019, 58: 437–446

    Article  Google Scholar 

  41. Maji T K, J. R A, Mukherjee S, et al. Combinatorial large-area MoS2/anatase-TiO2 interface: A pathway to emergent optical and optoelectronic functionalities. ACS Appl Mater Interfaces, 2020, 12: 44345–44359

    Article  Google Scholar 

  42. De Oliveira Silva G V, Subramanian A, Meng X, et al. Tungsten oxide ion-gated phototransistors using ionic liquid and aqueous gating media. J Phys D-Appl Phys, 2019, 52: 305102

    Article  Google Scholar 

  43. Kumar N, Kumar J, Panda S. Enhanced pH sensitivity over the Nernst limit of electrolyte gated a-IGZO thin film transistor using branched polyethylenimine. RSC Adv, 2016, 6: 10810–10815

    Article  Google Scholar 

  44. Ren H, Liang K, Li D, et al. Interface engineering of metal-oxide field-effect transistors for low-drift pH sensing. Adv Mater Inter, 2021, 8: 2100314

    Article  Google Scholar 

  45. Zhang S, Li Y, Tomasello G, et al. Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv Elect Mater, 2019, 5: 1900191

    Article  Google Scholar 

  46. Zhao C, Tan C, Lien D H, et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat Nanotechnol, 2020, 15: 53–58

    Article  Google Scholar 

  47. Subramanian A, Azimi M, Santato C, et al. Combining aqueous solution processing and printing for fabrication of flexible and sustainable tin dioxide ion-gated transistors. Adv Mater Tech, 2022, 7: 2100843

    Article  Google Scholar 

  48. Campos R, Borme J, Guerreiro J R, et al. Attomolar label-free detection of DNA hybridization with electrolyte-gated graphene field-effect transistors. ACS Sens, 2019, 4: 286–293

    Article  Google Scholar 

  49. Bisri S Z, Shimizu S, Nakano M, et al. Endeavor ofiontronics: From fundamentals to applications of ion-controlled electronics. Adv Mater, 2017, 29: 1607054

    Article  Google Scholar 

  50. Zhang H, Berthod C, Berger H, et al. Band filling and cross quantum capacitance in ion-gated semiconducting transition metal dichalcogenide monolayers. Nano Lett, 2019, 19: 8836–8845

    Article  Google Scholar 

  51. Morais R, Vieira D H, Klem M S, et al. Printed in-plane electrolyte-gated transistor based on zinc oxide. Semicond Sci Technol, 2022, 37: 035007

    Article  Google Scholar 

  52. Xiang L, Liu L, Zhang F, et al. Ion-gating engineering of organic semiconductors toward multifunctional devices. Adv Funct Mater, 2021, 31: 2102149

    Article  Google Scholar 

  53. Yan X, Qian J H, Sangwan V K, et al. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv Mater, 2022, 34: 2108025

    Article  Google Scholar 

  54. Zare Bidoky F, Frisbie C D. Sub-3 V, MHz-class electrolyte-gated transistors and inverters. ACS Appl Mater Interfaces, 2022, 14: 21295–21300

    Article  Google Scholar 

  55. Hsieh J C, Li Y, Wang H, et al. Design of hydrogel-based wearable EEG electrodes for medical applications. J Mater Chem B, 2022, 10: 7260–7280

    Article  Google Scholar 

  56. Bhattacharyya I M, Cohen S, Shalabny A, et al. Specific and label-free immunosensing of protein-protein interactions with silicon-based immunoFETs. Biosens Bioelectron, 2019, 132: 143–161

    Article  Google Scholar 

  57. Li Y, Cui B, Zhang S, et al. Ion-selective organic electrochemical transistors: Recent progress and challenges. Small, 2022, 18: 2107413

    Article  Google Scholar 

  58. Cea C, Spyropoulos G D, Jastrzebska-Perfect P, et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat Mater, 2020, 19: 679–686

    Article  Google Scholar 

  59. Heidarlou M A, Paletti P, Jariwala B, et al. Batch-fabricated WSe-on-sapphire field-effect transistors grown by chemical vapor deposition. IEEE Trans Elec Dev, 2020, 67: 1839–1844

    Article  Google Scholar 

  60. Jo H, Lee W, Jung H, et al. Ionically connected floating electrodes for long-distance (>1 mm) coplanar-gating graphene transistors. ACS Appl Mater Interfaces, 2021, 13: 13541–13547

    Article  Google Scholar 

  61. Torricelli F, Adrahtas D Z, Bao Z, et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Methods Primers, 2021, 1: 66

    Article  Google Scholar 

  62. Macchia E, Alberga D, Manoli K, et al. Organic bioelectronics probing conformational changes in surface confined proteins. Sci Rep, 2016, 6: 28085

    Article  Google Scholar 

  63. Luo S, Wang R, Wang L, et al. Breath alcohol sensor based on hydrogel-gated graphene field-effect transistor. Biosens Bioelectron, 2022, 210: 114319

    Article  Google Scholar 

  64. Bian L, Wang Z, White D L, et al. Machine learning-assisted calibration of Hg2+ sensors based on carbon nanotube field-effect transistors. Biosens Bioelectron, 2021, 180: 113085

    Article  Google Scholar 

  65. Fu Y M, Li H, Huang L, et al. Sputtered electrolyte-gated transistor with modulated metaplasticity behaviors. Adv Elect Mater, 2022, 8: 2200463

    Article  Google Scholar 

  66. Rashid R B, Evans A M, Hall L A, et al. A semiconducting two-dimensional polymer as an organic electrochemical transistor active layer. Adv Mater, 2022, 34: 2110703

    Article  Google Scholar 

  67. Balaish M, Gonzalez-Rosillo J C, Kim K J, et al. Processing thin but robust electrolytes for solid-state batteries. Nat Energy, 2021, 6: 227–239

    Article  Google Scholar 

  68. Huang W, Chen J, Wang G, et al. Dielectric materials for electrolyte gated transistor applications. J Mater Chem C, 2021, 9: 9348–9376

    Article  Google Scholar 

  69. Beale C, Altana A, Hamacher S, et al. Inkjet printed Ta2O5 on a flexible substrate for capacitive pH sensing at high ionic strength. Sens Actuat B-Chem, 2022, 369: 132250

    Article  Google Scholar 

  70. Jin M, Lee H, Lee J H, et al. Ferroelectrically modulated ion dynamics in Li+ electrolyte-gated transistors for neuromorphic computing. Appl Phys Rev, 2023, 10: 011407

    Article  Google Scholar 

  71. Wang J, Ye D, Meng Q, et al. Advances in organic transistor-based biosensors. Adv Mater Tech, 2020, 5: 2000218

    Article  Google Scholar 

  72. Nketia-Yawson B, Ahn H, Jo J W. Understanding effects of ion diffusion on charge carrier mobility of electrolyte-gated organic transistor using ionic liquid-embedded poly(3-hexylthiophene). Adv Funct Mater, 2022, 32: 2108215

    Article  Google Scholar 

  73. Wu X, Stephen M, Hidalgo T C, et al. Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic electrochemical transistors. Adv Funct Mater, 2022, 32: 2108510

    Article  Google Scholar 

  74. He T, Frisbie C D. Sub-band filling, Mott-like transitions, and ion size effects in C60 single crystal electric double layer transistors. ACS Nano, 2022, 16: 4823–4830

    Article  Google Scholar 

  75. Han Y L, Luo Z Z, Li C J, et al. Carrier-mediated Kondo effect and Hall mobility by electrolyte gating in slightly doped anatase TiO2 films. Phys Rev B, 2014, 90: 205107

    Article  Google Scholar 

  76. Jo Y J, Kim H, Ok J, et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv Funct Mater, 2020, 30: 1909707

    Article  Google Scholar 

  77. Kanjilal B, Zhu Y, Krishnadoss V, et al. Bioionic liquids: Enabling a paradigm shift toward advanced and smart biomedical applications. Adv Intelligent Syst, 2023, 5: 2200306

    Article  Google Scholar 

  78. Wang J, Lee S, Yokota T, et al. Gas-permeable organic electrochemical transistor embedded with a porous solid-state polymer electrolyte as an on-skin active electrode for electrophysiological signal acquisition. Adv Funct Mater, 2022, 32: 2200458

    Article  Google Scholar 

  79. Lee H, Jin M, Na H, et al. Implementation of synaptic device using ultraviolet ozone treated water-in-bisalt/polymer electrolyte-gated transistor. Adv Funct Mater, 2022, 32: 2110591

    Article  Google Scholar 

  80. Wei L, Jiang J, Wan Q. From pain to fear recognition via pavlovian learning in an organic-inorganic hybrid neuromorphic transistor. Adv Elect Mater, 2022, 8: 2101174

    Article  Google Scholar 

  81. Lubrano C, Bruno U, Ausilio C, et al. Supported lipid bilayers coupled to organic neuromorphic devices modulate short-term plasticity in biomimetic synapses. Adv Mater, 2022, 34: 2110194

    Article  Google Scholar 

  82. Lei Y, Li J, Fu W, et al. Synapse transistors based on Li7La3Zr2O12 (LLZO) nanofibers/polyvinyl alcohol (PVA) composite gate dielectric for neuromorphic application. J Mater Chem C, 2022, 10: 16379–16387

    Article  Google Scholar 

  83. Behera S K, Devabharathi N, Pradhan J R, et al. Concurrent subthermionic and strong thermionic transport in inkjet-printed indium zinc oxide/silver hybrid-channel field-effect transistors. Adv Elect Mater, 2019, 5: 1900401

    Article  Google Scholar 

  84. Zhang Y, van Doremaele E R W, Ye G, et al. Adaptive biosensing and neuromorphic classification based on an ambipolar organic mixed ionic-electronic conductor. Adv Mater, 2022, 34: 2200393

    Article  Google Scholar 

  85. Kim S H, Hong K, Xie W, et al. Electrolyte-gated transistors for organic and printed electronics. Adv Mater, 2013, 25: 1822–1846

    Article  Google Scholar 

  86. Zare Bidoky F, Tang B, Ma R, et al. Sub-3 V ZnO electrolyte-gated transistors and circuits with screen-printed and photo-crosslinked ion gel gate dielectrics: New routes to improved performance. Adv Funct Mater, 2020, 30: 1902028

    Article  Google Scholar 

  87. Liu S, He X, Su J, et al. A light-stimulus flexible synaptic transistor based on ion-gel side-gated graphene for neuromorphic computing. Adv Photon Res, 2022, 3: 2200174

    Article  Google Scholar 

  88. Pang B, Jiang G, Zhou J, et al. Molecular-scale design of cellulose-based functional materials for flexible electronic devices. Adv Elect Mater, 2021, 7: 2000944

    Article  Google Scholar 

  89. Hsieh J C, Alawieh H, Li Y, et al. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens Bioelectron, 2022, 218: 114756

    Article  Google Scholar 

  90. Kim H J, Chen B, Suo Z, et al. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science, 2020, 367: 773–776

    Article  Google Scholar 

  91. Schmode P, Ohayon D, Reichstein P M, et al. High-performance organic electrochemical transistors based on conjugated polyelectrolyte copolymers. Chem Mater, 2019, 31: 5286–5295

    Article  Google Scholar 

  92. Nguyen-Dang T, Chae S, Chatsirisupachai J, et al. Dual-mode organic electrochemical transistors based on self-doped conjugated polyelectrolytes for reconfigurable electronics. Adv Mater, 2022, 34: 2200274

    Article  Google Scholar 

  93. Bunyanidhi P, Phattharasupakun N, Tomon C, et al. Mechanofusing garnet solid electrolyte on the surface of Ni-rich layered oxide cathode towards high-rate capability of cylindrical Li-ion battery cells. J Power Sources, 2022, 549: 232043

    Article  Google Scholar 

  94. Chen W P, Duan H, Shi J L, et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J Am Chem Soc, 2021, 143: 5717–5726

    Article  Google Scholar 

  95. Yang Q, Cho H J, Bian Z, et al. Solid-state electrochemical thermal transistors. Adv Funct Mater, 2023, 33: 2214939

    Article  Google Scholar 

  96. Zhu L Q, Wan C J, Guo L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun, 2014, 5: 3158

    Article  Google Scholar 

  97. Philippi M, Gutiérrez-Lezama I, Ubrig N, et al. Lithium-ion conducting glass ceramics for electrostatic gating. Appl Phys Lett, 2018, 113: 033502

    Article  Google Scholar 

  98. Zhao J, Wang M, Zhang X, et al. Application of sodium-ion-based solid electrolyte in electrostatic tuning of carrier density in graphene. Sci Rep, 2017, 7: 3168

    Article  Google Scholar 

  99. Alam M H, Xu Z, Chowdhury S, et al. Lithium-ion electrolytic substrates for sub-1 V high-performance transition metal dichalcogenide transistors and amplifiers. Nat Commun, 2020, 11: 3203

    Article  Google Scholar 

  100. Guo X, Zhang Z, Li J, et al. Alleviation ofdendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett, 2021, 6: 395–403

    Article  Google Scholar 

  101. Wustoni S, Combe C, Ohayon D, et al. Membrane-free detection of metal cations with an organic electrochemical transistor. Adv Funct Mater, 2019, 29: 1904403

    Article  Google Scholar 

  102. Qin M, Han X, Ding D, et al. Light controllable electronic phase transition in ionic liquid gated monolayer transition metal dichalcogenides. Nano Lett, 2021, 21: 6800–6806

    Article  Google Scholar 

  103. Tang H, Niu W, Liao F, et al. Realizing Wafer-scale and low-voltage operation MoS2 transistors via electrolyte gating. Adv Elect Mater, 2020, 6: 1900838

    Article  Google Scholar 

  104. Chen S, Surendran A, Wu X, et al. Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv Funct Mater, 2020, 30: 2006186

    Article  Google Scholar 

  105. Chen G, Bai Y, Gao Y, et al. Inhibition of crystallization of poly (ethylene oxide) by ionic liquid: Insight into plasticizing mechanism and application for solid-state sodium ion batteries. ACS Appl Mater Interfaces, 2019, 11: 43252–43260

    Article  Google Scholar 

  106. Liu N, Liu Y, Hu J, et al. pH-dependent plasticity regulation in proton/electron hybrid oxide-based synaptic transistors. Appl Surf Sci, 2019, 481: 1412–1417

    Article  Google Scholar 

  107. Ren Z Y, Zhu L Q, Guo Y B, et al. Threshold-tunable, spike-rate-dependent plasticity originating from interfacial proton gating for pattern learning and memory. ACS Appl Mater Interfaces, 2020, 12: 7833–7839

    Article  Google Scholar 

  108. Jalem R, Rushton M J D, Manalastas Jr. W, et al. Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chem Mater, 2015, 27: 2821–2831

    Article  Google Scholar 

  109. Chen R, Lan L. Solution-processed metal-oxide thin-film transistors: A review of recent developments. Nanotechnology, 2019, 30: 312001

    Article  Google Scholar 

  110. Wei X, Kumagai S, Tsuzuku K, et al. Solution-processed flexible metal-oxide thin-film transistors operating beyond 20 MHz. Flex Print Electron, 2020, 5: 015003

    Article  Google Scholar 

  111. Khan M, Nagal V, Masrat S, et al. Wide-linear range cholesterol detection using Fe2O3 nanoparticles decorated ZnO nanorods based electrolyte-gated transistor. J Electrochem Soc, 2022, 169: 027512

    Article  Google Scholar 

  112. Li Y, Zhang S, Hamad N, et al. Tailoring the self-healing properties of conducting polymer films. Macromol Biosci, 2020, 20: 2000146

    Article  Google Scholar 

  113. Li Y, Zhou X, Sarkar B, et al. Recent progress on self-healable conducting polymers. Adv Mater, 2022, 34: 2108932

    Article  Google Scholar 

  114. Koutsouras D A, Amiri M H, Blom P W M, et al. An iontronic multiplexer based on spatiotemporal dynamics of multiterminal organic electrochemical transistors. Adv Funct Mater, 2021, 31: 2011013

    Article  Google Scholar 

  115. Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488–492

    Article  Google Scholar 

  116. Chen T, Wang C, Yang G, et al. Monolithic integration of perovskite photoabsorbers with IGZO thin-film transistor backplane for phototransistor-based image sensor. Adv Mater Tech, 2023, 8: 2200679

    Article  Google Scholar 

  117. Jang Y, Park J, Kang J, et al. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing. ACS Appl Electron Mater, 2022, 4: 1427–1448

    Article  Google Scholar 

  118. Sheng J, Hong T H, Lee H M, et al. Amorphous IGZO TFT with high mobility of ∼70 cm2/(V s) via vertical dimension control using PEALD. ACS Appl Mater Interfaces, 2019, 11: 40300–40309

    Article  Google Scholar 

  119. Shi J, Zhang J, Yang L, et al. Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices. Adv Mater, 2021, 33: 2006230

    Article  Google Scholar 

  120. Lee W B, Shin H S, Han K L, et al. Delamination of graphene/ZnO interlayer driven by photocatalytic effect for flexible a-IGZO TFT applications. Appl Surf Sci, 2022, 571: 151358

    Article  Google Scholar 

  121. Münzenrieder N, Cantarella G, Vogt C, et al. Stretchable and conformable oxide thin-film electronics. Adv Elect Mater, 2015, 1: 1400038

    Article  Google Scholar 

  122. Knobelspies S, Daus A, Cantarella G, et al. Flexible a-IGZO phototransistor for instantaneous and cumulative UV-exposure monitoring for skin health. Adv Elect Mater, 2016, 2: 1600273

    Article  Google Scholar 

  123. Wang B, Thukral A, Xie Z, et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat Commun, 2020, 11: 2405

    Article  Google Scholar 

  124. Yarali E, Koutsiaki C, Faber H, et al. Recent progress in photonic processing of metal-oxide transistors. Adv Funct Mater, 2020, 30: 1906022

    Article  Google Scholar 

  125. Chen F, Tang Q, Ma T, et al. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat, 2022, 4: e12299

    Article  Google Scholar 

  126. Shen C, Yin Z, Collins F, et al. Atomic layer deposition of metal oxides and chalcogenides for high performance transistors. Adv Sci, 2022, 9: 2104599

    Article  Google Scholar 

  127. Cong H, Chang Y, Zhou R, et al. Rational tuning of the cation ratio in metal oxide semiconductor nanofibers for low-power neuromorphic transistors. Sci China Mater, 2023, 66: 3251–3260

    Article  Google Scholar 

  128. Chen M, Cui D, Zhao Z, et al. Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In2O3 nanoribbon transistors and phosphatase. Nano Res, 2022, 15: 5510–5516

    Article  Google Scholar 

  129. Guo M, Ou H, Xie D, et al. Critical assessment of the high carrier mobility of bilayer In2O3/IGZO transistors and the underlying mechanisms. Adv Elect Mater, 2023, 9: 2201184

    Article  Google Scholar 

  130. Yap B K, Zhang Z, Thien G S H, et al. Recent advances of In2O3-based thin-film transistors: A review. Appl Surf Sci Adv, 2023, 16: 100423

    Article  Google Scholar 

  131. Si M, Lin Z, Chen Z, et al. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat Electron, 2022, 5: 164–170

    Article  Google Scholar 

  132. Zhou M, Xu X, Wan G, et al. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res, 2022, 15: 8677–8687

    Article  Google Scholar 

  133. Sha R, Basak A, Maity P C, et al. ZnO nano-structured based devices for chemical and optical sensing applications. Sens Actuat Rep, 2022, 4: 100098

    Google Scholar 

  134. Khan M, Nagal V, Masrat S, et al. Vertically oriented zinc oxide nanorod-based electrolyte-gated field-effect transistor for high-performance glucose sensing. Anal Chem, 2022, 94: 8867–8873

    Article  Google Scholar 

  135. Shariati M, Sadeghi M, Shojaei S H R. Sensory analysis of hepatitis B virus DNA for medicinal clinical diagnostics based on molybdenum doped ZnO nanowires field effect transistor biosensor; a comparative study to PCR test results. Anal Chim Acta, 2022, 1195: 339442

    Article  Google Scholar 

  136. Dagdeviren C, Hwang S, Su Y, et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 2013, 9: 3398–3404

    Article  Google Scholar 

  137. Wang D, Sun T, Xu L, et al. Interfacial engineering of SnO2/Bi2O2 CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate. Nano Res, 2023, 16: 2278–2285

    Article  Google Scholar 

  138. Liu Y, Ji H, Yuan Z, et al. Conductometric butanone gas sensor based on Co3O4 modified SnO2 hollow spheres with ppb-level detection limit. Sens Actuat B-Chem, 2023, 374: 132787

    Article  Google Scholar 

  139. Avis C, Billah M M, Kim Y G, et al. Analysis of the solution-processed a-SnOx and HfO2 interface for applications in thin-film transistors. ACS Appl Electron Mater, 2021, 3: 651–657

    Article  Google Scholar 

  140. Liang D D, Chen B, Cho H J, et al. Thickness optimization toward high-performance bottom-gated transparent tin dioxide thin-film transistors. ACS Appl Electron Mater, 2020, 2: 3454–3458

    Article  Google Scholar 

  141. Zhang J, Lei Y, Cao S, et al. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res, 2022, 15: 2013–2022

    Article  Google Scholar 

  142. Khizir H A, Abbas T A H. Hydrothermal synthesis of TiO2 nanorods as sensing membrane for extended-gate field-effect transistor (EG-FET) pH sensing applications. Sens Actuat A-Phys, 2022, 333: 113231

    Article  Google Scholar 

  143. Zhang J, Zhang Y, Cui P, et al. One-volt TiO thin film transistors with low-temperature process. IEEE Elec Dev Lett, 2021, 42: 521–524

    Article  Google Scholar 

  144. Manimekala T, Sivasubramanian R, Dharmalingam G. Nanomaterial-based biosensors using field-effect transistors: A review. J Elec Mater, 2022, 51: 1950–1973

    Article  Google Scholar 

  145. Nunez F A, Castro A C H, de Oliveira V L, et al. Electrochemical immunosensors based on zinc oxide nanorods for detection of antibodies against SARS-CoV-2 spike protein in convalescent and vaccinated individuals. ACS Biomater Sci Eng, 2023, 9: 458–473

    Article  Google Scholar 

  146. Chen Q, Tan Y. Enhanced plasmonic absorption of Pt cuboctahedra-WO3 nanohybrids used as visible light photocatalysts for overall water splitting. Nano Res, 2023, 16: 5919–5928

    Article  Google Scholar 

  147. Lu L, Zhou Y, Zheng T, et al. SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays. Nano Res, 2023, 16: 4049–4054

    Article  Google Scholar 

  148. Xu D, Deng X, Zhao Y, et al. Hydrogenation dynamics ofelectrically controlled metal-insulator transition in proton-gated transparent and flexible WO3 transistors. Adv Funct Mater, 2019, 29: 1902497

    Article  Google Scholar 

  149. Meng X, Quenneville F, Venne F, et al. Electrolyte-gated WO3 transistors: Electrochemistry, structure, and device performance. J Phys Chem C, 2015, 119: 21732–21738

    Article  Google Scholar 

  150. Islam M M, Saha J K, Hasan M M, et al. Spray-pyrolyzed high-κ zirconium-aluminum-oxide dielectric for high performance metal-oxide thin-film transistors for low power displays. Adv Mater Inter, 2021, 8: 2100600

    Article  Google Scholar 

  151. Zavabeti A, Aukarasereenont P, Tuohey H, et al. High-mobility p-type semiconducting two-dimensional β-TeO2. Nat Electron, 2021, 4: 277–283

    Article  Google Scholar 

  152. Luo Z, Peng B, Zeng J, et al. Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat Commun, 2021, 12: 1928

    Article  Google Scholar 

  153. Wang C, Dong H, Jiang L, et al. Organic semiconductor crystals. Chem Soc Rev, 2018, 47: 422–500

    Article  Google Scholar 

  154. Park S, Heo S W, Lee W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561: 516–521

    Article  Google Scholar 

  155. Luo Z, Song X, Liu X, et al. Revealing the key role of molecular packing on interface spin polarization at two-dimensional limit in spintronic devices. Sci Adv, 2023, 9: eade9126

    Article  Google Scholar 

  156. Li S, Tian M, Gao Q, et al. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat Mater, 2019, 18: 1091–1097

    Article  Google Scholar 

  157. Ai W, Chen J, Dong X, et al. High mobility and quantum oscillations in semiconducting Bi2O2Te nanosheets grown by chemical vapor deposition. Nano Lett, 2022, 22: 7659–7666

    Article  Google Scholar 

  158. Chae M S, Park J H, Son H W, et al. IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform. Sens Actuat B-Chem, 2018, 262: 876–883

    Article  Google Scholar 

  159. Lu C H, Hou T H, Pan T M. Low-voltage InGaZnO ion-sensitive thin-film transistors fabricated by low-temperature process. IEEE Trans Elec Dev, 2016, 63: 5060–5063

    Article  Google Scholar 

  160. Kim H, Rim Y S, Kwon J Y. Evaluation of metal oxide thin-film electrolyte-gated field effect transistors for glucose monitoring in small volume of body analytes. IEEE Sens J, 2020, 20: 9004–9010

    Google Scholar 

  161. Lee S, Park S, Kim C H, et al. Approaching the Nernst detection limit in an electrolyte-gated metal oxide transistor. IEEE Elec Dev Lett, 2021, 42: 50–53

    Article  Google Scholar 

  162. Yang P, Cai G, Wang X, et al. Electrolyte-gated indium oxide thin film transistor based biosensor with low operation voltage. IEEE Trans Elec Dev, 2019, 66: 3554–3559

    Article  Google Scholar 

  163. Ishikawa F N, Chang H K, Curreli M, et al. Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 2009, 3: 1219–1224

    Article  Google Scholar 

  164. Bandiello E, Sessolo M, Bolink H J. Aqueous electrolyte-gated ZnO transistors for environmental and biological sensing. J Mater Chem C, 2014, 2: 10277–10281

    Article  Google Scholar 

  165. Jakob M H, Gutsch S, Chatelle C, et al. Flexible thin film pH sensor based on low-temperature atomic layer deposition. Physica Rapid Res Ltrs, 2017, 11: 1700123

    Article  Google Scholar 

  166. Barbosa M S, da Silva R A, Santato C, et al. Detection of H2 facilitated by ionic liquid gating of tungsten oxide films. J Vacuum Sci Tech A, 2022, 40: 013202

    Article  Google Scholar 

  167. Alqahtani Z, Alghamdi N, Grell M. Monitoring the lead-and-copper rule with a water-gated field effect transistor. J Water Health, 2020, 18: 159–171

    Article  Google Scholar 

  168. Altug H, Oh S H, Maier S A, et al. Advances and applications of nanophotonic biosensors. Nat Nanotechnol, 2022, 17: 5–16

    Article  Google Scholar 

  169. Negahdary M, Angnes L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord Chem Rev, 2022, 464: 214565

    Article  Google Scholar 

  170. Wu X, Feng J, Deng J, et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci China Chem, 2020, 63: 1281–1288

    Article  Google Scholar 

  171. Rim Y S, Chen H, Zhu B, et al. Interface engineering of metal oxide semiconductors for biosensing applications. Adv Mater Inter, 2017, 4: 1700020

    Article  Google Scholar 

  172. Tripathy N, Kim D H. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Conv, 2018, 5: 27

    Article  Google Scholar 

  173. Xu M, Obodo D, Yadavalli V K. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron, 2019, 124–125: 96–114

    Article  Google Scholar 

  174. Macchia E, Manoli K, Di Franco C, et al. Organic field-effect transistor platform for label-free, single-molecule detection of genomic biomarkers. ACS Sens, 2020, 5: 1822–1830

    Article  Google Scholar 

  175. AlQahtani H, Alswieleh A, Al-Khurayyif I, et al. Parallel potentiometric and capacitive response in a water-gate thin film transistor biosensor at high ionic strength. Sensors, 2021, 21: 5618

    Article  Google Scholar 

  176. Zhao C, Man T, Cao Y, et al. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS Sens, 2022, 7: 3644–3653

    Article  Google Scholar 

  177. Chang H K, Ishikawa F N, Zhang R, et al. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. ACS Nano, 2011, 5: 9883–9891

    Article  Google Scholar 

  178. Li Y, Zeng B, Yang Y, et al. Design of high stability thin-film transistor biosensor for the diagnosis of bladder cancer. Chin Chem Lett, 2020, 31: 1387–1391

    Article  Google Scholar 

  179. Guo J, Shen R, Shen X, et al. Construction of high stability indium gallium zinc oxide transistor biosensors for reliable detection of bladder cancer-associated microRNA. Chin Chem Lett, 2022, 33: 979–982

    Article  Google Scholar 

  180. Woo Son H, Park J H, Chae M S, et al. Bilayer indium gallium zinc oxide electrolyte-gated field-effect transistor for biosensor platform with high reliability. Sens Actuat B-Chem, 2020, 312: 127955

    Article  Google Scholar 

  181. Andrianova M S, Kuznetsov E V, Grudtsov V P, et al. CMOS-compatible biosensor for L-carnitine detection. Biosens Bioelectron, 2018, 119: 48–54

    Article  Google Scholar 

  182. Kim J, Rim Y S, Chen H, et al. Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano, 2015, 9: 4572–4582

    Article  Google Scholar 

  183. Ahmad R, Ahn M S, Hahn Y B. ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J Colloid Interface Sci, 2017, 498: 292–297

    Article  Google Scholar 

  184. Comini E. Metal oxides nanowires chemical/gas sensors: Recent advances. Mater Today Adv, 2020, 7: 100099

    Article  Google Scholar 

  185. Dai L, Wang Y, Zou X, et al. Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small, 2020, 16: 1906567

    Article  Google Scholar 

  186. Ito K, Satake H, Mori Y, et al. Biocompatible and Na+-sensitive thin-film transistor for biological fluid sensing. Sci Tech Adv Mater, 2019, 20: 917–926

    Article  Google Scholar 

  187. Alghamdi N, Alqahtani Z, Grell M. Sub-nanomolar detection of cesium with water-gated transistor. J Appl Phys, 2019, 126: 064502

    Article  Google Scholar 

  188. Uber T H, Hüffer T, Planitz S, et al. Sorption of non-ionic organic compounds by polystyrene in water. Sci Total Environ, 2019, 682: 348–355

    Article  Google Scholar 

  189. Alghamdi N, Alqahtani Z, Zhou C, et al. Sensing aromatic pollutants in water with catalyst-sensitized water-gated transistor. Chem Pap, 2020, 74: 4169–4180

    Article  Google Scholar 

  190. Chen S, Dong Y, Liu T L, et al. Waterproof, flexible field-effect transistors with submicron monocrystalline Si nanomembrane derived encapsulation for continuous pH sensing. Biosens Bioelectron, 2022, 195: 113683

    Article  Google Scholar 

  191. Nakata S, Shiomi M, Fujita Y, et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device. Nat Electron, 2018, 1: 596–603

    Article  Google Scholar 

  192. Manjakkal L, Szwagierczak D, Dahiya R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog Mater Sci, 2020, 109: 100635

    Article  Google Scholar 

  193. Cho S K, Cho W J. High-sensitivity pH sensor based on coplanar gate AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor. Chemosensors, 2021, 9: 42

    Article  Google Scholar 

  194. Kim K, Kim H, Jo E J, et al. Reactant/polymer hybrid films on p-n junction photodetectors for self-powered, non-invasive glucose biosensors. Biosens Bioelectron, 2021, 175: 112855

    Article  Google Scholar 

  195. Ghoneim M T, Nguyen A, Dereje N, et al. Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chem Rev, 2019, 119: 5248–5297

    Article  Google Scholar 

  196. Subramanian A, Azimi M, Leong C Y, et al. Solution-processed titanium dioxide ion-gated transistors and their application for pH sensing. FrontElectron, 2022, 3: 813535

    Google Scholar 

  197. Liu B, Libanori A, Zhou Y, et al. Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl Mater Interfaces, 2022, 14: 7301–7310

    Article  Google Scholar 

  198. Fujita H, Hao M, Takeoka S, et al. Paper-based wearable ammonia gas sensor using organic-inorganic composite PEDOT:PSS with iron (III) compounds. Adv Mater Tech, 2022, 7: 2101486

    Article  Google Scholar 

  199. Li H, Wu C H, Liu Y C, et al. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sens Actuat B-Chem, 2021, 341: 130035

    Article  Google Scholar 

  200. Deonikar V G, Puguan J M C, Kim H. Ag nanoparticles embedded defective tungsten oxide hydrate thin films for the enhanced electrochromic performance: Insights on the physico-chemical properties and localized surface plasmon resonance mechanism. Acta Mater, 2021, 207: 116693

    Article  Google Scholar 

  201. Aliasghari H, Arabi A M, Haratizadeh H. A novel approach for solution combustion synthesis of tungsten oxide nanoparticles for photocatalytic and electrochromic applications. Ceramics Int, 2020, 46: 403–414

    Article  Google Scholar 

  202. Xu Y T, Yuan C, Zhou B Y, et al. Silicon solar cell-enabled organic photoelectrochemical transistor optoelectronics. Sci China Mater, 2023, 66: 1861–1869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li, ZhongZhong Luo or Qiang Zhao.

Additional information

This work was supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant No. NY221111), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20220397, BK20230359), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grnant Nos. 22KJB430038, 22KJB510010), the National Natural Science Foundation of China (Grant Nos. 62204130, 62288102, and 62304112), and the National Funds for Distinguished Young Scientists (Grant No. 61825503).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yao, Y., Wang, L. et al. Metal oxide ion gated transistors based sensors. Sci. China Technol. Sci. 67, 1040–1060 (2024). https://doi.org/10.1007/s11431-023-2567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2567-2

Navigation