Skip to main content

Advertisement

Log in

Hydroxyapatite/ZrO2@SiO2 bioceramic composite: Producing a promising biomaterial from natural sources

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

ZrO2@SiO2 (core–shell) was prepared by mixing ZrO2 with SiO2 according to modified Stöber method. The nanostructures (15 wt%, ZrO2, SiO2, ZrO2@SiO2) were mixed with bovine hydroxyapatite (HA) and subjected to X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), Vickers hardness (VH), and biaxial flexural strength (BFS). XRD showed no formation of secondary phases and FE-SEM revealed more homogeneous surface for ZrO2@SiO2. VH and BFS results showed statistically significant difference between all groups (p < 0.05). ZrO2@SiO2 significantly improved VH and BFS of HA. The ZrO2@SiO2 proved to be a promising material as a reinforcement for HA-based bioceramic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Gracis, V.P. Thompson, J.L. Ferencz, N.R. Silva, E.A. Bonfante, A new classification system for all-ceramic and ceramic-like restorative materials. Int. J. Prosthodont. 28, 227–235 (2015). https://doi.org/10.11607/ijp.4244

    Article  Google Scholar 

  2. R.J. Kohal, D. Weng, M. Bächle, J.R. Strub, Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J. Periodontol. 75, 1262–1268 (2004). https://doi.org/10.1902/jop.2004.75.9.1262

    Article  Google Scholar 

  3. H. Chai, J.J. Lee, A.J. Mieleszko, S.J. Chu, Y. Zhang, On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures. Acta Biomater. 10, 3756–3761 (2014). https://doi.org/10.1016/j.actbio.2014.04.016

    Article  CAS  Google Scholar 

  4. I. Denry, J.A. Holloway, Ceramics for dental applications: A review. Materials (Basel). 3, 351–368 (2010). https://doi.org/10.3390/ma3010351

    Article  CAS  Google Scholar 

  5. L.J. de Azevedo-Silva, B.M. Ferrairo, L.A. Pires, D.S.S. Padovini, L.F.G. Dias, R. Erbereli, C.A. Fortulan, P.A. Lisboa-Filho, J.H. Rubo, A.F.S. Borges, Novel 8%-TiO2—nanoparticle-reinforced dense polycrystalline bovine hydroxyapatite bioceramic. Int. J. Ceram. Eng. Sci. 4, 1–12 (2022). https://doi.org/10.1002/ces2.10127

    Article  CAS  Google Scholar 

  6. L.A. Pires, L.J.A. Silva, B.M. Ferrairo, R. Erbereli, J.F.P. Lovo, O.P. Gomes, J.H. Rubo, P.N. Lisboa-Filho, J.A. Griggs, C.A. Fortulan, A.F.S. Borges, Effects of ZnO/TiO2 nanoparticle and TiO2 nanotube additions to dense polycrystalline hydroxyapatite bioceramic from bovine bones. Dent. Mater. 36, e38–e46 (2020). https://doi.org/10.1016/j.dental.2019.11.006

    Article  CAS  Google Scholar 

  7. M.R. Ayatollahi, M.Y. Yahya, H.A. Shirazi, S.A. Hassan, Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceram. Int. 42, 10818–10827 (2015)

    Article  Google Scholar 

  8. P.H.M. Fernandes, E.A.F. Bordini, F.B. Cassiano, L.J. de Azevedo-Silva, B.M. Ferrairo, P.N. Lisboa-Filho, C.A. Fortulan, D.G.S. dos Passos, A.F.S. Borges, TiO2 nanoparticles added to dense bovine hydroxyapatite bioceramics increase human osteoblast mineralization activity. Dent. Mater. 38, 275–283 (2022). https://doi.org/10.1016/j.dental.2022.08.007

    Article  CAS  Google Scholar 

  9. R.R. Carvalho, L.M. Silva, E.A. Santos, Intrinsic orientation of hydroxyapatite grains on the surface of dense pellets produced by uniaxial pressing. Mater. Res. 22, 03 (2019). https://doi.org/10.1590/1980-5373-MR-2018-0705

    Article  Google Scholar 

  10. A.M. Al-Wahadni, D.L. Hussey, N. Grey, M.M. Hatamleh, Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study. J. Contemp. Dent. Pract. 10, 51–58 (2009)

    Article  Google Scholar 

  11. H. Chen, L. Zhang, M. Li, G. Xie, Synthesis of core-shell micro/nanoparticles and their tribological application: A review. Materials (Basel) 13, 4590 (2020). https://doi.org/10.3390/ma13204590

    Article  CAS  Google Scholar 

  12. R.R. Rao, T.S. Kannan, Synthesis and sintering of hydroxyapatite–zirconia composites. Mater. Sci. Eng. C 20, 187–193 (2002). https://doi.org/10.1016/S0928-4931(02)00031-0

    Article  Google Scholar 

  13. H. Maleki-Ghaleh, J. Khalil-Allafi, P. Keikhosravani, M.R. Etminanfar, Y. Behnamian, Effect of nano-zirconia on microstructure and biological behavior of hydroxyapatite-based bone scaffolds. J. Mater. Eng. Perform. 29, 4412–4420 (2020). https://doi.org/10.1007/s11665-020-04927-2

    Article  CAS  Google Scholar 

  14. S. Padilla, J. Román, S. Sánchez-Salcedo, M. Vallet-Regí, Hydroxyapatite/SiO(2)-CaO-P(2)O(5) glass materials: in vitro bioactivity and biocompatibility. Acta Biomater. 2, 331–342 (2006). https://doi.org/10.1016/j.actbio.2006.01.006

    Article  CAS  Google Scholar 

  15. A. Nakahira, K. Nakata, C. Numako, H. Murata, K. Matsunaga, Synthesis and evaluation of calcium-deficient hydroxyapatite with SiO2. Mater. Sci. Appl. 2, 1194–1198 (2011). https://doi.org/10.4236/msa.2011.29161

    Article  CAS  Google Scholar 

  16. B.M. Ferrairo, V. Mosquim, L.J. de Azevedo-Silva, L.A. Pires, D.S.S. Padovini, A.G. Magdalena, C.A. Fortulan, J.H. Rubo, A.F.S. Borges, Production of bovine hydroxyapatite nanoparticles as a promising biomaterial via mechanochemical and sonochemical methods. Mater. Chem. Phys. 295, 127046 (2023)

    Article  CAS  Google Scholar 

  17. Y. Xiao-ling, N. Zhao, Q. Zhou, C. Cai, X. Zhang, J. Xu, Precise preparation of highly monodisperse ZrO2@SiO2 core–shell nanoparticles with adjustable refractive indices. J. Mater. Chem. C 1, 3359–3366 (2013). https://doi.org/10.1039/C3TC30324A

    Article  Google Scholar 

  18. A. Mourhly, M. Khachani, A.E. Hamidi, M. Kacimi, M. Halim, S. Arsalane, The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomater. Nanotechnol. 5, 35 (2015). https://doi.org/10.5772/62033

    Article  CAS  Google Scholar 

  19. R. Sumathi, R. Thenmozhi, Synthesis and characterization of spherical silica nanoparticles by Sol-Gel method. Int. Conf. Syst. Sci. Control Commun. Eng. Technol. 1, 204–208 (2015)

    Google Scholar 

  20. M. Manoj, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Core–shell hydroxyapatite/Mg nanostructures: Surfactant free facile synthesis, characterization and their in vitro cell viability studies against leukaemia cancer cells (K562). RSC Adv. 5, 48705–48711 (2015). https://doi.org/10.1039/C5RA04663G

    Article  CAS  Google Scholar 

  21. A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J. Mol. Struct. 744, 657–661 (2005). https://doi.org/10.1016/j.molstruc.2004.11.078

    Article  CAS  Google Scholar 

  22. S. Musić, N. Filipović-Vinceković, L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 28, 89–94 (2011). https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  23. J. Manalu, B. Soegijono, D.J. Indrani, Characterization of hydroxyapatite derived from bovine bone. Asian. J. App. Sci. 3 (2015).

  24. C. Li, M. Li, UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J. Raman Spectrosc. 33, 301–308 (2002). https://doi.org/10.1002/jrs.863

    Article  CAS  Google Scholar 

  25. Y. Gao, Y. Masuda, W. Seo, H. Ohta, K. Koumoto, TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceram. Int. 30, 1365–1368 (2004). https://doi.org/10.1016/j.ceramint.2003.12.105

    Article  CAS  Google Scholar 

  26. A.E. Herrera-Alonso, M.C. Ibarra-Alonso, S.C. Esparza-González, S. Estrada-Flores, L.A. Garcia-Cerda, A. Martinéz-Luévanos, Biomimetic growth of hydroxyapatite on SiO2 microspheres to improve its biocompatibility and gentamicin loading capacity. Materials 14, 6941 (2021). https://doi.org/10.3390/ma14226941

    Article  CAS  Google Scholar 

  27. S. Uno, M. Okada, H. Taketa, Y. Torii, T. Matsumoto, Toughening of highly translucent zirconia by monoclinic ZrO2 and SiO2 particle coating. Dent. Mater. J. 39, 295–301 (2020). https://doi.org/10.4012/dmj.2018-415

    Article  CAS  Google Scholar 

  28. L. Fu, C. Wu, K. Grandfield, E. Unosson, J. Chang, H. Engqvist, W. Xia, Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS. J. Eur. Ceram. Soc. 36, 3487–3494 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.016

    Article  CAS  Google Scholar 

  29. V.V. Silva, R.Z. Domingues, Hydroxyapatite–zirconia composites prepared by precipitation method. J. Mater. Sci. Mater. Med. 8, 907–910 (1997). https://doi.org/10.1023/a:1018566124507

    Article  CAS  Google Scholar 

  30. S.H. Wang, X.X. Huang, J.K. Guo, Mechanical properties and microstructure of ZrO2–SiO2 composite. J. Mater. Sci. 32, 197–201 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by São Paulo Research Foundation (FAPESP; process number: 2018/23639-0) and the Coordination for the Improvement of Higher Education Personnel (CAPES, Finance Code 001).

Funding

This work was supported by the São Paulo Research Foundation (FAPESP; process number: 2018/23639–0) and the Coordination for the Improvement of Higher Education Personnel (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Flávia Sanches Borges.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovini, D.S.S., de Azevedo-Silva, L.J., Ferrairo, B.M. et al. Hydroxyapatite/ZrO2@SiO2 bioceramic composite: Producing a promising biomaterial from natural sources. MRS Communications 13, 657–663 (2023). https://doi.org/10.1557/s43579-023-00408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00408-4

Keywords

Navigation