Skip to main content
Log in

Performance, applications, and sustainability of 3D-printed cement and other geomaterials

  • Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

3D Printing technologies are now widely used in various industries and are being adopted in the construction industry globally. While recent papers have focused on structures, designs, and applications, this paper reviews 3D concrete Printing (3DCP) to include advancements in material development and new applications. The chemical characteristics of the cementitious binder dominantly govern the 3D Printing of cement and other geomaterials. Such factors influence the material's printability, including flowability, extrudability, and buildability during the printing process. This paper also emphasizes future perspectives and social and economic impacts. Based on the available literature, the cost of 3D printed construction can potentially be lower than conventional methods due to topology optimization, reduced labor requirement, and avoiding over-engineering. 3DCP provides tremendous opportunities for future materials research and development and broader adoption. Interesting insights on the available materials and technologies, together with the capabilities and possible applications of this technology, can guide stakeholders in the building and infrastructure industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Adopted from Ref. 64.

Similar content being viewed by others

References

  1. J.R.C. Dizon, A.D. Valino, L.R. Souza, A.H. Espera, Q. Chen, R.C. Advincula, “Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Commun. 9(4), 1267–1283 (2019). https://doi.org/10.1557/mrc.2019.147

    Article  CAS  Google Scholar 

  2. J. Manapat, J.D. Mangadlao, B.D.B. Tiu, G.C. Tritchler, R.C. Advincula, High-strength stereolithographic 3D printed nanocomposites: graphene oxide metastability. ACS Appl. Mater. Interfaces 9–11, 10085–10093 (2017)

    Article  Google Scholar 

  3. J.R.C. Dizon, A.D. Valino, L.R. Souza, A.H. Espera, Q. Chen, R.C. Advincula, 3D printed injection molds using various 3D printing technologies. Mater. Sci. Forum 1005, 150–156 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1005.150

    Article  Google Scholar 

  4. R.C. Advincula et al., Additive manufacturing for COVID-19: devices, materials, prospects and challenges. MRS Commun (2020). https://doi.org/10.1557/mrc.2020.57

    Article  Google Scholar 

  5. J.R. Diego, D.W.C. Martinez, G.S. Robles, J.R.C. Dizon, Development of smartphone-controlled hand and arm exoskeleton for persons with disability. Open Eng. 11(1), 161–170 (2021)

    Article  Google Scholar 

  6. R.C. Advincula, J.R.C. Dizon, E.B. Caldona, J.F.D.C. Siacor, R.D. Maalihan, A.H. Espera, On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 11, 539–553 (2021)

    Article  CAS  Google Scholar 

  7. A.H. Espera, J.R.C. Dizon, Q. Chen, R.C. Advincula, 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf. (2019). https://doi.org/10.1007/s40964-019-00077-7

    Article  Google Scholar 

  8. L.D. Tijing, J.R.C. Dizon, I. Ibrahim, A.R.N. Nisay, H.K. Shon, R.C. Advincula, 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today 18, 100486 (2020). https://doi.org/10.1016/j.apmt.2019.100486

    Article  Google Scholar 

  9. L.D. Tijing, J.R.C. Dizon, G.C. Cruz, Jr., 3D-printed absorbers for solar-driven interfacial water evaporation: a mini-review. Adv. Sustain. Sci. Eng. Technol. 3(1), 0210103 (2021). https://doi.org/10.26877/asset.v3i1.8367.

  10. R.N.M. Delda, R.B. Basuel, R.P. Hacla, D.W.C. Martinez, J.-J. Cabibihan, J.R.C. Dizon, 3D printing polymeric materials for robots with embedded systems. Technologies (2021). https://doi.org/10.3390/technologies9040082

    Article  Google Scholar 

  11. P. Wei, H. Leng, Q. Chen, R.C. Advincula, E.B. Pentzer, Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing. ACS Appl. Polym. Mater. 1(4), 885–892 (2019). https://doi.org/10.1021/acsapm.9b00118

    Article  CAS  Google Scholar 

  12. E.B. Caldona, J.R.C. Dizon, R.A. Viers, V.J. Garcia, Z.J. Smith, R.C. Advincula, Additively manufactured high performance polymeric materials and their potential use in the oil and gas industry. MRS Commun. 11, 701–715 (2017)

    Article  Google Scholar 

  13. A.C. De Leon et al., Plastic metal-free electric motor by 3D printing of graphene-polyamide powder. ACS Appl. Energy Mater. 1(4), 1726–1733 (2018). https://doi.org/10.1021/acsaem.8b00240

    Article  CAS  Google Scholar 

  14. N. Andres, Development of solar-powered water-pump with 3D printed impeller. Open Eng. J. 11, 249–253 (2021). https://doi.org/10.1515/eng-2021-0015

    Article  Google Scholar 

  15. J.E.B. Caldona, J.R.C. Dizon, A.H. Espera, R.C. Advincula, On the economic, environmental, and sustainability aspects of 3D printing toward a cyclic economy, in Energy Transition: Climate Action and Circularity (ACS Symposium Series). ed. by P.J. Boul (American Chemical Society, Washington, DC, 2022), pp.507–525

    Chapter  Google Scholar 

  16. M.J. Grant, A. Booth, A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info. Libr. J. 26(2), 91–108 (2009). https://doi.org/10.1111/j.1471-1842.2009.00848.x

    Article  Google Scholar 

  17. ISO/ASTM, International Standard ISO/ASTM 52900 Additive manufacturing—General principles—Terminology, vol. 5 (ISO/ASTM, West Conshohocken, 2015)

  18. J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers. Addit. Manuf. (2018). https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  19. A.C. De Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R.C. Advincula, High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141–155 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.04.010

    Article  CAS  Google Scholar 

  20. M.T. Espino, B.J. Tuazon, G.S. Robles, J.R.C. Dizon, Application of Taguchi methodology in evaluating the rockwell hardness of SLA 3D printed polymers. Mater. Sci. Forum 1005, 166–173 (2020). https://doi.org/10.4028/www.scientific.net/msf.1005.166

    Article  Google Scholar 

  21. J. O’Connell, 10 most important 3D printer slicer settings. All3DP.com (2021). https://all3dp.com/2/3d-slicer-settings-3d-printer/

  22. B.J. Tuazon, M.T. Espino, J. Ryan, C. Dizon, Investigation on the effects of acetone vapor-polishing to fracture behavior of ABS printed materials at different operating temperature. Mater. Sci. Forum 1005, 141–149 (2020)

    Article  Google Scholar 

  23. A. Kothari, What are the different types of 3D printing? Futur. Learn. (2022). https://www.futurelearn.com/info/courses/getting-started-with-digital-manufacturing/0/steps/184102

  24. J.R.C. Dizon, C.C.L. Gache, H.M.S. Cascolan, L.T. Cancino, R.C. Advincula, Post-processing of 3D-printed polymers. Technologies 9(3), 61 (2021). https://doi.org/10.3390/technologies9030061

    Article  Google Scholar 

  25. Ashish, N. Ahmad, P. Gopinath, and A. Vinogradov, 3D Printing in Medicine: Current Challenges and Potential Applications (Elsevier, Amsterdam, 2019)

  26. R. Tomek, Advantages of precast concrete in highway infrastructure construction. Procedia Eng. 196, 176–180 (2017). https://doi.org/10.1016/j.proeng.2017.07.188

    Article  Google Scholar 

  27. J. Xiao et al., Large-scale 3D printing concrete technology: current status and future opportunities. Cem. Concr. Compos. (2021). https://doi.org/10.1016/j.cemconcomp.2021.104115

    Article  Google Scholar 

  28. Y. Weng et al., Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J. Clean. Prod. 261, 121245 (2020). https://doi.org/10.1016/j.jclepro.2020.121245

    Article  Google Scholar 

  29. M.A. Meibodi et al., Smart slab: Computational design and digital fabrication of a lightweight concrete slab, in Recalibration Imprecision Infidelity—Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 2018), pp. 434–443 (2018). https://doi.org/10.52842/conf.acadia.2018.434

  30. X. Liu, B. Sun, The influence of interface on the structural stability in 3D concrete printing processes. Addit. Manuf. 48, 102456 (2021). https://doi.org/10.1016/j.addma.2021.102456

    Article  Google Scholar 

  31. N. Labonnote, A. Rønnquist, B. Manum, P. Rüther, Additive construction: state-of-the-art, challenges and opportunities. Autom. Constr. 72, 347–366 (2016). https://doi.org/10.1016/j.autcon.2016.08.026

    Article  Google Scholar 

  32. B. Turner, Radiolaria pavilion by Shiro Studio. https://www.dezeen.com/2009/06/22/radiolaria-pavilion-by-shiro-studio. Accessed 24 Aug 2022

  33. A. Chen, M. Yossef, Applicability and limitations of 3D Printing for civil structures applicability and limitations of 3D printing for civil structures, in Conf. Auton. Robot. Constr. Infrastruct., June, pp. 1–25 (2015). https://www.researchgate.net/publication/277665549_Applicability_and_Limitations_of_3D_Printing_for_Civil_Structures.

  34. M. Starr, World’s first 3D-printed apartment building constructed in China. C.Net, pp. 1–2 (2015). https://www.cnet.com/news/worlds-first-3d-printed-apartment-building-constructed-in-china/, http://www.cnet.com/news/worlds-first-3d-printed-apartment-building-constructed-in-china/

  35. H. Busta, Gensler Completes the World’s First 3D-Printed Office Building (2016). https://www.architectmagazine.com/technology/gensler-designs-the-worlds-first-3d-printed-office-building-in-dubai_o

  36. B. O’Neil, Copenhagen: COBOD 3D prints European building again in just three days—3DPrint.com|the voice of 3D printing/additive manufacturing (2019). https://3dprint.com/, https://3dprint.com/253859/copenhagen-cobod-3d-prints-european-building-three-days/

  37. O. Rodríguez-espíndola, Can 3D printing address operations challenges in disaster Management ?, in 25th Int. EurOMA Conf., no. 2010, pp. 1–10 (2018). http://publications.aston.ac.uk/id/eprint/33651/

  38. A. Siddika, M.A. Al Mamun, W. Ferdous, A.K. Saha, R. Alyousef, 3D-printed concrete: applications, performance, and challenges. J. Sustain. Cem. Mater. 9(3), 127–164 (2020). https://doi.org/10.1080/21650373.2019.1705199

    Article  CAS  Google Scholar 

  39. I. Hager, A. Golonka, R. Putanowicz, 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng. 151, 292–299 (2016). https://doi.org/10.1016/j.proeng.2016.07.357

    Article  Google Scholar 

  40. S. Bhattacherjee, A.V. Rahul, M. Santhanam, Concrete 3D printing—progress worldwide and in India. Indian Concr. J. 94(9), 8–25 (2020)

    Google Scholar 

  41. A.S.A. Elfatah, 3D printing in architecture, engineering and construction (concrete 3D printing). J. Eng. Res. 162, 1–18 (2019). https://doi.org/10.21608/ERJ.2019.139808

  42. P. Krupík, 3D printers as part of construction 4.0 with a focus on transport constructions. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/867/1/012025

  43. R. A. Buswell, W. R. Leal de Silva, S. Z. Jones, and J. Dirrenberger, 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006

  44. S. Fox, L. Marsh, G. Cockerham, Design for manufacture: a strategy for successful application to buildings. Constr. Manag. Econ. 19(5), 493–502 (2001). https://doi.org/10.1080/01446193.2001.9709625

    Article  Google Scholar 

  45. M.A. Hossain, A. Zhumabekova, S.C. Paul, J.R. Kim, A review of 3D printing in construction and its impact on the labor market. Sustainability 12(20), 1–21 (2020). https://doi.org/10.3390/su12208492

    Article  CAS  Google Scholar 

  46. P. Madeleine, The first 3D-printed military barracks unveiled in Texas. 3D Print. NEWS (2021). https://www.3dnatives.com/en/first-3d-printed-military-barracks-texas-180820214/

  47. ICON, ICON 3D Prints the first simulated mars surface habitat for NASA designated by renowed architecture firm BIG-Bjarke Ingels Group. ICON Team (2021). https://www.iconbuild.com/updates/icon-3d-prints-the-first-simulated-mars-surface-habitat-for-nasa

  48. D. Olick, You can now buy a 3D-printed home—here’s a look inside. Consum. News Bus. Channel (2021). https://www.cnbc.com/2021/02/25/you-can-now-buy-a-3d-printed-home-heres-a-look-inside.html

  49. L. Masina, Malawi begins classes in world’s first 3D-printed school. Voice Am. (2021). https://www.voanews.com/a/africa_malawi-begins-classes-worlds-first-3d-printedschool/6208612.html

  50. V. Nicolás, World’s first 3D printed bridge opens in Spain. ArchDaily (2017). https://www.archdaily.com/804596/worlds-first-3d-printed-bridge-opens-in-spain

  51. A. France-Presse, Amman, World’s first 3D-printed bridge opens to cyclists in Netherlands (Amman: Real Estate Monit. Worldwide, 2017). https://www.theguardian.com/technology/2017/oct/18/world-first-3d-printed-bridge-cyclists-netherlands

  52. N. Huet, The world’s first 3D-printed steel bridge has opened in Amsterdam. euronews.next (2021). https://www.euronews.com/next/2021/07/16/the-world-s-first-3d-printed-steel-bridge-has-opened-in-amsterdam

  53. P. Pintos, DFAB house/NCCR digital fabrication. ArchDaily (2019). https://www.archdaily.com/942221/dfab-house-eth-zurich-plus-nccr-digital-fabrication

  54. R. Sweet, Germany prints its first house as Peri claims technique is market ready. Global Construction Review (GCR) (2020). https://www.globalconstructionreview.com/germany-prints-its-first-house-peri-claims-techniq/

  55. Creality, The 3D printing bridges from China. https://www.creality.com/blog-detail/creality-the-3d-printing-bridges-from-china. Accessed 5 Aug 2022

  56. V. Calota, “Winsun 3D prints isolation wards to curb coronavirus outbreak—3Dnatives. 3D Nativ. (2020). https://www.3dnatives.com/en/winsun-coronavirus-260220205/#!

  57. M. Thomsen, World’s biggest 3D printed building opens in Dubai, a two-story 6,900 square-foot government office that’s part of a plan to have 25 percent of all new construction made with 3D printers by 2030. Mail Online (2020). https://www.dailymail.co.uk/sciencetech/article-7975233/Worlds-biggest-3D-printed-building-opens-Dubai-6-900-square-foot-government-office.html

  58. National University of Singapore, NUS builds new 3D printing capabilities, paving the way for construction innovations (2018). https://news.nus.edu.sg/nus-builds-new-3d-printing-capabilities-paving-the-way-for-construction-innovations/

  59. K. Tablang, Manila’s Lewis grand hotel unveils the first 3D-printed hotel room, Forbes (2015). https://www.forbes.com/sites/kristintablang/2015/09/28/lewis-grand-hotel-unveils-first-3d-printed-hotel-room-philippines/?sh=70c4a1d42872

  60. Y. He, Y. Zhang, C. Zhang, H. Zhou, Energy-saving potential of 3D printed concrete building with integrated living wall. Energy Build. (2020). https://doi.org/10.1016/j.enbuild.2020.110110

    Article  Google Scholar 

  61. D.C. MacLaren, M.A. White, Cement: its chemistry and properties. J. Chem. Educ. 80(6), 623–635 (2003). https://doi.org/10.1021/ed080p623

    Article  CAS  Google Scholar 

  62. J.W. Bullard et al., Mechanisms of cement hydration. Cem. Concr. Res. 41(12), 1208–1223 (2011). https://doi.org/10.1016/j.cemconres.2010.09.011

    Article  CAS  Google Scholar 

  63. N. Roussel, G. Ovarlez, S. Garrault, C. Brumaud, The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 42(1), 148–157 (2012). https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  CAS  Google Scholar 

  64. J. Mangadlao, P. Cao, R. Advincula, Smart cements and cement additives for oil and gas operations. J. Petrol. Sci. Eng. 129, 63–76 (2015). https://doi.org/10.1016/j.petrol.2015.02.009

    Article  CAS  Google Scholar 

  65. D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato, S. Ng, Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cem. Concr. Res. 112, 96–110 (2018). https://doi.org/10.1016/j.cemconres.2018.05.014

  66. I. Navarrete, Y. Kurama, N. Escalona, M. Lopez, Impact of physical and physicochemical properties of supplementary cementitious materials on structural build-up of cement-based pastes. Cem. Concr. Res. (2020). https://doi.org/10.1016/j.cemconres.2020.105994

    Article  Google Scholar 

  67. W. Meng, A. Kumar, K.H. Khayat, Effect of silica fume and slump-retaining polycarboxylate-based dispersant on the development of properties of portland cement paste. Cem. Concr. Compos. 99, 181–190 (2019). https://doi.org/10.1016/j.cemconcomp.2019.03.021

    Article  CAS  Google Scholar 

  68. H. Vikan, H. Justnes, Rheology of cementitious paste with silica fume or limestone. Cem. Concr. Res. 37(11), 1512–1517 (2007). https://doi.org/10.1016/j.cemconres.2007.08.012

    Article  CAS  Google Scholar 

  69. C.F. Ferraris, K.H. Obla, R. Hill, The influence of mineral admixtures on the rheology of cement paste and concrete. Cem. Concr. Res. (2001). https://doi.org/10.1016/S0008-8846(00)00454-3

    Article  Google Scholar 

  70. S. Bhattacherjee et al., Sustainable materials for 3D concrete printing. Cem. Concr. Compos. (2021). https://doi.org/10.1016/j.cemconcomp.2021.104156

    Article  Google Scholar 

  71. M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production-present and future. Cem. Concr. Res. 41(7), 642–650 (2011). https://doi.org/10.1016/j.cemconres.2011.03.019

    Article  CAS  Google Scholar 

  72. S.W. Tang, H.G. Zhu, Z.J. Li, E. Chen, H.Y. Shao, Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age. Constr. Build. Mater. 75, 11–18 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.006

    Article  Google Scholar 

  73. N. Khalil, G. Aouad, K. El Cheikh, S. Rémond, Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr. Build. Mater. 157, 382–391 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.109

    Article  CAS  Google Scholar 

  74. S. Choi, G.S. Ryu, K.T. Koh, G.H. An, H.Y. Kim, Experimental study on the shrinkage behavior and mechanical properties of AAM mortar mixed with CSA expansive additive. Materials (Basel) (2019). https://doi.org/10.3390/ma12203312

    Article  Google Scholar 

  75. M. Chen et al., Effect of tartaric acid on the printable, rheological and mechanical properties of 3D printing sulphoaluminate cement paste. Materials (Basel) (2018). https://doi.org/10.3390/ma11122417

    Article  Google Scholar 

  76. L.J. Vandeperre, M. Liska, A. Al-Tabbaa, Reactive magnesium oxide cements: properties and applications, in Sustain. Constr. Mater. Technol. - Int. Conf. Sustain. Constr. Mater. Technol., pp. 397–410 (2007)

  77. A. Khalil, X. Wang, K. Celik, 3D printable magnesium oxide concrete: towards sustainable modern architecture. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101145

    Article  Google Scholar 

  78. H.A. Abdel-Gawwad et al., Towards a clean environment: the potential application of eco-friendly magnesia-silicate cement in CO2 sequestration. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.119875

    Article  Google Scholar 

  79. Y. Weng et al., Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Constr. Build. Mater. 221, 595–603 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.053

    Article  CAS  Google Scholar 

  80. Y. Qian, K. Lesage, K. El Cheikh, G. De Schutter, Effect of polycarboxylate ether superplasticizer (PCE) on dynamic yield stress, thixotropy and flocculation state of fresh cement pastes in consideration of the Critical Micelle Concentration (CMC). Cem. Concr. Res. 107, 75–84 (2018). https://doi.org/10.1016/j.cemconres.2018.02.019

    Article  CAS  Google Scholar 

  81. S. Kawashima, K. Wang, R.D. Ferron, J.H. Kim, N. Tregger, S. Shah, A review of the effect of nanoclays on the fresh and hardened properties of cement-based materials. Cem. Concr. Res. (2021). https://doi.org/10.1016/j.cemconres.2021.106502

    Article  Google Scholar 

  82. E. Keita, H. Bessaies-Bey, W. Zuo, P. Belin, N. Roussel, Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem. Concr. Res. (2019). https://doi.org/10.1016/j.cemconres.2019.105787

    Article  Google Scholar 

  83. F. Lin, C. Meyer, Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cem. Concr. Res. 39(4), 255–265 (2009). https://doi.org/10.1016/j.cemconres.2009.01.014

    Article  CAS  Google Scholar 

  84. C.K.Y. Leung, T. Pheeraphan, Microwave curing of Portland cement concrete: experimental results and feasibility for practical applications. Constr. Build. Mater. 9(2), 67–73 (1995). https://doi.org/10.1016/0950-0618(94)00001-I

    Article  Google Scholar 

  85. V. Vaitkevičius, E. Šerelis, V. Kerševičius, Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology. Constr. Build. Mater. 169, 354–363 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.007

    Article  CAS  Google Scholar 

  86. S. Kristombu Baduge et al., Improving performance of additive manufactured (3D printed) concrete: a review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures 29, 1597–1609 (2021). https://doi.org/10.1016/j.istruc.2020.12.061

  87. J. Sun, F. Aslani, J. Lu, L. Wang, Y. Huang, G. Ma, Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing. Ceram. Int. 47(19), 27107–27121 (2021). https://doi.org/10.1016/j.ceramint.2021.06.124

    Article  CAS  Google Scholar 

  88. K. Cuevas, M. Chougan, F. Martin, S.H. Ghaffar, D. Stephan, P. Sikora, 3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres—rheological, thermal and mechanical properties. J. Build. Eng. (2021). https://doi.org/10.1016/j.jobe.2021.102718

    Article  Google Scholar 

  89. C. Matthäus, D. Back, D. Weger, T. Kränkel, J. Scheydt, C. Gehlen, Effect of cement type and limestone powder content on extrudability of lightweight concrete, in RILEM Bookseries, vol. 28 (Springer, Cham, 2020), pp. 312–322. https://doi.org/10.1007/978-3-030-49916-7_32

  90. K. Henke, D. Talke, C. Matthäus, Additive manufacturing by extrusion of lightweight concrete—strand geometry, nozzle design and layer layout, in RILEM Bookseries, vol. 28 (Springer, Cham, 2020), pp. 906–915. https://doi.org/10.1007/978-3-030-49916-7_88.

  91. M. Mohammad, E. Masad, T. Seers, S.G. Al-Ghamdi, High-performance light-weight concrete for 3D printing, in RILEM Bookseries, vol. 28 (Springer, Cham, 2020), pp. 459–467. https://doi.org/10.1007/978-3-030-49916-7_47.

  92. A.V. Rahul, M. Santhanam, Evaluating the printability of concretes containing lightweight coarse aggregates. Cem. Concr. Compos. (2020). https://doi.org/10.1016/j.cemconcomp.2020.103570

    Article  Google Scholar 

  93. T.Q. Duong, E. Korolev, A. Inozemtcev, Selection of reinforcing fiber for high-strength lightweight concrete for 3D-printing. IOP Conf. Ser. Mater. Sci. Eng. (2021). https://doi.org/10.1088/1757-899X/1030/1/012007

    Article  Google Scholar 

  94. C. Liu et al., Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cem. Concr. Compos. (2021). https://doi.org/10.1016/j.cemconcomp.2021.104158

    Article  Google Scholar 

  95. E.K.K. Nambiar, K. Ramamurthy, Air-void characterisation of foam concrete. Cem. Concr. Res. 37(2), 221–230 (2007). https://doi.org/10.1016/j.cemconres.2006.10.009

    Article  CAS  Google Scholar 

  96. D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, 3D-printable lightweight foamed concrete and comparison with classical foamed concrete in terms of fresh state properties and mechanical strength. Constr. Build. Mater. 254, 119271 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119271

  97. S.S. Sahu, I.S.R. Gandhi, S. Khwairakpam, State-of-the-art review on the characteristics of surfactants and foam from foam concrete perspective. J. Inst. Eng. Ser. A 99(2), 391–405 (2018). https://doi.org/10.1007/s40030-018-0288-5

    Article  CAS  Google Scholar 

  98. V. N. Nerella et al., Micro-and macroscopic investigations on the interface between layers of 3D-printed cementitious elements, in Proc. ICACMS 2017 Int. Conf. Adv. Constr. Mater. Syst., vol. 3(9), pp. 3–8 (2017). https://www.researchgate.net/publication/319504633_MICRO-AND_MACROSCOPIC_INVESTIGATIONS_ON_THE_INTERFACE_BETWEEN_LAYERS_OF_3D-PRINTED_CEMENTITIOUS_ELEMENTS

  99. K. Ramamurthy, E.K. Kunhanandan Nambiar, G. Indu Siva Ranjani, A classification of studies on properties of foam concrete. Cem. Concr. Compos. 31(6), 388–396 (2009). https://doi.org/10.1016/j.cemconcomp.2009.04.006

  100. V. Markin, V.N. Nerella, C. Schröfl, G. Guseynova, V. Mechtcherine, Material design and performance evaluation of foam concrete for digital fabrication. Materials (Basel) (2019). https://doi.org/10.3390/ma12152433

    Article  Google Scholar 

  101. S. Cho, J. Kruger, A. van Rooyen, S. Zeranka, G. van Zijl, Rheology of 3D printable lightweight foam concrete incorporating nano-silica, in RILEM Bookseries, vol. 23 (Springer, Cham, 2020), pp. 373–381

  102. S. Ramakrishnan, S. Muthukrishnan, J. Sanjayan, K. Pasupathy, Concrete 3D printing of lightweight elements using hollow-core extrusion of filaments. Cem. Concr. Compos. 123, 104220 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104220

  103. M. Hambach, D. Volkmer, Properties of 3D-printed fiber-reinforced Portland cement paste. Cem. Concr. Compos. 79, 62–70 (2017). https://doi.org/10.1016/j.cemconcomp.2017.02.001

    Article  CAS  Google Scholar 

  104. B. Panda, S. Chandra Paul, M.J. Tan, Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett. (2017). https://doi.org/10.1016/j.matlet.2017.07.123

  105. V.N. Nerella, H. Ogura, V. Mechtcherine, Incorporating reinforcement into digital concrete construction, in Annu. IASS Symp. Creat. Struct. Des., July 2018

  106. D. Asprone, C. Menna, F.P. Bos, T.A.M. Salet, J. Mata-Falcón, W. Kaufmann, Rethinking reinforcement for digital fabrication with concrete. Cem. Concr. Res. 112, 111–121 (2018). https://doi.org/10.1016/j.cemconres.2018.05.020

    Article  CAS  Google Scholar 

  107. B. Nematollahi et al., Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials (Basel) (2018). https://doi.org/10.3390/ma11122352

    Article  Google Scholar 

  108. M. Hambach, H. Möller, T. Neumann, D. Volkmer, Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100 MPa). Cem. Concr. Res. 89, 80–86 (2016). https://doi.org/10.1016/j.cemconres.2016.08.011

    Article  CAS  Google Scholar 

  109. G. Ma, Z. Li, L. Wang, F. Wang, J. Sanjayan, Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr. Build. Mater. (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.008

    Article  Google Scholar 

  110. M. Hambach, D. Volkmer, Properties of 3D-printed fiber-reinforced portland cement paste. 3D Concr. Print. Technol. (2019). https://doi.org/10.1016/B978-0-12-815481-6.00005-1

  111. F.P. Bos, E. Bosco, T.A.M. Salet, Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys. Prototyp. (2019). https://doi.org/10.1080/17452759.2018.1548069

    Article  Google Scholar 

  112. Y. Bao et al., Three-dimensional printing multifunctional engineered cementitious composites (ECC) for structural elements, in First RILEM International Conference on Concrete and Digital Fabrication—Digital Concrete 2018. DC 2018. RILEM Bookseries (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-99519-9_11

  113. J. Yu, C.K.Y. Leung, Impact of 3D printing direction on mechanical performance of strain-hardening cementitious composite (SHCC), in RILEM Bookseries, vol. 19 (Springer, Cham, 2019), pp. 255–265. https://doi.org/10.1007/978-3-319-99519-9_24.

  114. H. Ogura, V.N. Nerella, V. Mechtcherine, Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D-printing. Materials (Basel) (2018). https://doi.org/10.3390/ma11081375

    Article  Google Scholar 

  115. D.G. Soltan, V.C. Li, A self-reinforced cementitious composite for building-scale 3D printing. Cem. Concr. Compos. 90, 1–13 (2018). https://doi.org/10.1016/j.cemconcomp.2018.03.017

    Article  CAS  Google Scholar 

  116. V. Mechtcherine et al., Alternative reinforcements for digital concrete construction, in RILEM Bookseries, vol. 19 (Springer, Cham, 2019), pp. 167–175. https://doi.org/10.1007/978-3-319-99519-9_15.

  117. G. Ma, Z. Li, L. Wang, G. Bai, Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Mater. Lett. 235, 144–147 (2019). https://doi.org/10.1016/j.matlet.2018.09.159

    Article  CAS  Google Scholar 

  118. F.P. Bos, Z.Y. Ahmed, E.R. Jutinov, T.A.M. Salet, Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials (Basel) (2017). https://doi.org/10.3390/ma10111314

  119. A. D’Alessandro, A.L. Pisello, C. Fabiani, F. Ubertini, L.F. Cabeza, F. Cotana, Multifunctional smart concretes with novel phase change materials: mechanical and thermo-energy investigation. Appl. Energy 212, 1448–1461 (2018). https://doi.org/10.1016/j.apenergy.2018.01.014

    Article  Google Scholar 

  120. B. Han, S. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review. Meas. J. Int. Meas. Confed. 59, 110–128 (2015). https://doi.org/10.1016/j.measurement.2014.09.048

    Article  Google Scholar 

  121. J.L. García Calvo, G. Pérez, P. Carballosa, E. Erkizia, J.J. Gaitero, A. Guerrero, Development of ultra-high performance concretes with self-healing micro/nano-additions. Constr. Build. Mater. 138, 306–315 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.015

  122. S. Gupta, S.D. Pang, H.W. Kua, Autonomous healing in concrete by bio-based healing agents—a review. Constr. Build. Mater. 146, 419–428 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.111

    Article  Google Scholar 

  123. F. Sanchez, K. Sobolev, Nanotechnology in concrete—a review. Constr. Build. Mater. (2010). https://doi.org/10.1016/j.conbuildmat.2010.03.014

    Article  Google Scholar 

  124. A.L. Brooks, Y. Fang, Z. Shen, J. Wang, H. Zhou, Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials. Cem. Concr. Compos. (2021). https://doi.org/10.1016/j.cemconcomp.2021.104033

    Article  Google Scholar 

  125. B. Šavija et al., Simulation-aided design of tubular polymeric capsules for self-healing concrete. Materials (Basel) (2017). https://doi.org/10.3390/ma10010010

    Article  Google Scholar 

  126. C. De Nardi, D. Gardner, A.D. Jefferson, Development of 3D printed networks in self-healing concrete. Materials (Basel) (2020). https://doi.org/10.3390/ma13061328

    Article  Google Scholar 

  127. Z. Shen, H. Zhou, Predicting effective thermal and elastic properties of cementitious composites containing polydispersed hollow and core-shell micro-particles. Cem. Concr. Compos. (2020). https://doi.org/10.1016/j.cemconcomp.2019.103439

    Article  Google Scholar 

  128. Z. Shen, A.L. Brooks, Y. He, J. Wang, H. Zhou, Physics-guided multi-objective mixture optimization for functional cementitious composites containing microencapsulated phase changing materials. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.109842

    Article  Google Scholar 

  129. A.L. Brooks, H. Zhou, D. Hanna, Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr. Build. Mater. 159, 316–328 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.102

    Article  CAS  Google Scholar 

  130. M. Hoffmann, K. Żarkiewicz, A. Zieliński, S. Skibicki, Ł. Marchewka, Foundation piles—a new feature for concrete 3d printers. Materials (Basel). (2021). https://doi.org/10.3390/ma14102545

  131. J.H. Jo, B.W. Jo, W. Cho, J.H. Kim, Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. Int. J. Concr. Struct. Mater. (2020). https://doi.org/10.1186/s40069-019-0388-2

    Article  Google Scholar 

  132. Z. Zhao et al., A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 9(1), 349–368 (2020). https://doi.org/10.1515/ntrev-2020-0023

    Article  CAS  Google Scholar 

  133. C. Liu et al., Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 9(1), 155–169 (2020). https://doi.org/10.1515/ntrev-2020-0014

    Article  CAS  Google Scholar 

  134. P.F. Wilson, S. Griffiths, E. Williams, M.P. Smith, M.A. Williams, Designing 3-D prints for blind and partially sighted audiences in museums: exploring the needs of those living with sight loss. Visit. Stud. 23(2), 120–140 (2020). https://doi.org/10.1080/10645578.2020.1776562

    Article  Google Scholar 

  135. S.S.L. Chan, R.M. Pennings, L. Edwards, G.V. Franks, 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101335

    Article  Google Scholar 

  136. F. Craveiro, S. Nazarian, H. Bartolo, P.J. Bartolo, J. Pinto Duarte, An automated system for 3D printing functionally graded concrete-based materials. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101146

  137. R. de Best, Global construction industry spending 2014–2019, with forecasts up until 2035. https://www.statista.com/statistics/788128/construction-spending-worldwide/. Accessed 25 Aug 2022

  138. P. Teicholz, Labor productivity declines in the construction industry: causes and remedies, in AECbytes Viewpoint, vol. 4(14), p. 2004 (2004). http://www.aecbytes.com/viewpoint/2013/issue_67.html

  139. B. García de Soto et al., Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall. Autom. Constr. 92, 297–311 (2018). https://doi.org/10.1016/j.autcon.2018.04.004

  140. G. De Schutter, K. Lesage, V. Mechtcherine, V.N. Nerella, G. Habert, I. Agusti-Juan, Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem. Concr. Res. 112, 25–36 (2018). https://doi.org/10.1016/j.cemconres.2018.06.001

    Article  CAS  Google Scholar 

  141. V. Mechtcherine, V.N. Nerella, F. Will, M. Näther, J. Otto, M. Krause, Large-scale digital concrete construction—CONPrint3D concept for on-site, monolithic 3D-printing. Autom. Constr. (2019). https://doi.org/10.1016/j.autcon.2019.102933

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge partial support of this work and resources with the Department of Science and Technology (DOST) Philippines, Bataan Peninsula State University, and the University of Tennessee System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto C. Advincula.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rigoberto Advincula was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, G., Dizon, J.R.C., Farzadnia, N. et al. Performance, applications, and sustainability of 3D-printed cement and other geomaterials. MRS Communications 13, 385–399 (2023). https://doi.org/10.1557/s43579-023-00358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00358-x

Keywords

Navigation