Skip to main content

Advertisement

Log in

Effects of heat treatment through muffle furnace or microwave on microstructure and corrosion behavior of 316L stainless steel produced by selective laser melting

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The SLM-manufactured 316L stainless steel was independently subjected to conventional muffle furnace or microwave heat treatment under different heat temperatures (600 or 900°C) and soaking time (30 or 60 min). Under the heat treatment at 600°C for 60 min, melt pools were observed in 316L stainless steel heat-treated using a conventional furnace, while these defects were eliminated in the microwave-treated 316L stainless steel. The SLM-manufactured 316L stainless steel after microwave heat treatment at 600°C for 60 min had a high corrosion potential (− 0.268 V) and a low passivation potential (0.124 V) and showed the smoothest surface after the FeCl3 immersion test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. B. Zhang, L. Dembinski, C. Coddet, Mater. Sci. Eng. A 584, 21–31 (2013). https://doi.org/10.1016/j.msea.2013.06.055

    Article  CAS  Google Scholar 

  2. C. Morsiya, Aust. J. Mech. Eng. 20, 803–813 (2019)

    Article  Google Scholar 

  3. W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, Comput. Aided. Des. 69, 65–89 (2015). https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  4. A. Röttger, J. Boes, W. Theisen, M. Thiele, C. Esen, A. Edelmann, R. Hellmann, Int. J. Adv. Manuf. Technol. 108, 769–783 (2020). https://doi.org/10.1007/s00170-020-05371-1

    Article  Google Scholar 

  5. D. Kong, C. Dong, X. Ni, X. Li, N.P.J. Mater, Degrad. 3, 24 (2019). https://doi.org/10.1038/s41529-019-0086-1

    Article  CAS  Google Scholar 

  6. M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans, J.P. Kruth, J.V. Humbeeck, K. Vanmeensel, Addit. Manuf. 23, 402–410 (2018). https://doi.org/10.1016/j.addma.2018.08.028

    Article  CAS  Google Scholar 

  7. E. Tascioglu, Y. Karabulut, Y. Kaynak, Int. J. Adv. Manuf. Technol. 107, 1947–1956 (2020). https://doi.org/10.1007/s00170-020-04972-0

    Article  Google Scholar 

  8. S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Scr. Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034

    Article  CAS  Google Scholar 

  9. J.H. Lee, Y.S. Kim, Corros. Eng. Sci. Technol. 14(6), 313–324 (2015). https://doi.org/10.14773/cst.2015.14.6.313

    Article  CAS  Google Scholar 

  10. C. Man, Z. Duan, Z. Cui, C. Dong, D. Kong, T. Liu, S. Chen, X. Wang, Mater. Lett. 243, 157–160 (2019). https://doi.org/10.1016/j.matlet.2019.02.047

    Article  CAS  Google Scholar 

  11. N. Kang, P. Coddet, M.R. Ammar, H. Liao, C. Coddet, Mater. Charact. 130, 243–249 (2017). https://doi.org/10.1016/j.matchar.2017.06.026

    Article  CAS  Google Scholar 

  12. W. Tillmann, L. Hagen, C. Schaak, J. Liß, M. Schaper, K.P. Hoyer, M.E. Aydinöz, K.U. Garthe, J. Therm. Spray. Tech. 29, 1396–1409 (2020). https://doi.org/10.1007/s11666-020-01081-y

    Article  CAS  Google Scholar 

  13. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, J. Mater. Process. Technol. 249, 255–263 (2017). https://doi.org/10.1016/j.jmatprotec.2017.05.042

    Article  CAS  Google Scholar 

  14. C. Salman, A.K. Gammer, J. Chaubey, S. Eckert, Mater. Sci. Eng. 748, 205–212 (2019). https://doi.org/10.1016/j.msea.2019.01.110

    Article  CAS  Google Scholar 

  15. M.S.I.N. Kamariah, W.S.W. Harun, N.Z. Khalil, F. Ahmad, M.H. Ismail, S. Sharif, IOP Conf. Ser.: Mater. Sci. Eng. 257, 012021 (2017). https://doi.org/10.1088/1757-899X/257/1/012021

    Article  Google Scholar 

  16. W.S. Shin, B. Son, W. Song, H. Sohn, H. Jang, Y.J. Kim, C. Park, Mater. Sci. Eng. A 806, 140805 (2021). https://doi.org/10.1016/j.msea.2021.140805

    Article  CAS  Google Scholar 

  17. H. Sidhom, T. Amadou, H. Sahlaoui, C. Braham, Metall. Mater. Trans. A 38, 1269–1280 (2007). https://doi.org/10.1007/s11661-007-9114-9

    Article  CAS  Google Scholar 

  18. M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, R. Hague, Metall. Mater. Trans. A 46, 3842–3851 (2015). https://doi.org/10.1007/s11661-015-2882-8

    Article  CAS  Google Scholar 

  19. Y. Zhong, L.E. Rännar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, Z. Shen, J. Nucl. Mater. 486, 234–245 (2017). https://doi.org/10.1016/j.jnucmat.2016.12.042

    Article  CAS  Google Scholar 

  20. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154, 20–24 (2018). https://doi.org/10.1016/j.scriptamat.2018.05.015

    Article  CAS  Google Scholar 

  21. R.V. Patil, G.P. Tiwari, B.D. Sharma, Met. Sci. 14(11), 525–528 (1980). https://doi.org/10.1179/030634580790426012

    Article  CAS  Google Scholar 

  22. X. Ni, D. Kong, Y. Wen, L. Zhang, W. Wu, B. He, L. Lu, D. Zhu, Int. J. Min. Met. Mater. 26, 319–328 (2018). https://doi.org/10.1007/s12613-019-1740-x

    Article  CAS  Google Scholar 

  23. W. Chen, Int. J. Electrochem. Sci. 13, 10217–10232 (2018). https://doi.org/10.20964/2018.11.11

    Article  CAS  Google Scholar 

  24. R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, M.O. Speidel, Corros. Sci. 43(4), 707–726 (2001). https://doi.org/10.1016/S0010-938X(00)00087-1

    Article  CAS  Google Scholar 

  25. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J. Mater. Sci. Technol. 35(7), 1499–1507 (2019). https://doi.org/10.1016/j.jmst.2019.03.003

    Article  CAS  Google Scholar 

  26. M. Olzon-Dionysio, S.D. de Souza, R.L.O. Basso, S. de Souzac, Surf. Coat. Technol. 202(15), 3607–3614 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the partial financial support of National University of Kaohsiung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 251 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, HC., Wong, KK., Wu, SC. et al. Effects of heat treatment through muffle furnace or microwave on microstructure and corrosion behavior of 316L stainless steel produced by selective laser melting. MRS Communications 13, 177–183 (2023). https://doi.org/10.1557/s43579-023-00330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00330-9

Keywords

Navigation