Skip to main content
Log in

Quantitative Evaluation of Aged AISI 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop–electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Cihal, A. Desestret, M. Froment, and G.-H. Wagner: 5th Eur. Conf. on Corrosion, Proc. Conf., Paris, 1973, pp. 249–54

  2. Y. Cetre, P. Eichner, G. Sibaud, and J.M. Scarabello: 3rd Eur. Conf. on Corrosion, Proc. Conf., CEFRACOR, Lyon, France, 1997, pp. C4.1–C4.12

  3. F. Mazaudier, G. Sanchez, and P. Fauvet: 3rd Eur. Conf. on Corrosion, Proc. Conf., CEFRACOR, Lyon, France, 1997, pp. 12.1–12.6

  4. P. Zahumensky, S. Tuleja, J Orszagova, J. Janovec, V. Siladiova: Corr. Sci., 1999, vol. 41, pp. 1305–22

    Article  CAS  Google Scholar 

  5. A.P. Majidi, M.A. Streicher: Corr.-Nace, 1984, vol. 40 (11), pp. 584–93

    CAS  Google Scholar 

  6. A.P. Majidi, M.A. Streicher: Corr.-Nace, 1984, vol. 40 (9), pp. 445–58

    CAS  Google Scholar 

  7. A.P. Majidi, M.A. Streicher: Corr.-Nace, 1984, vol. 40 (8), pp. 393–408

    CAS  Google Scholar 

  8. Y.J. Oh, J.H. Yoon, J.H. Hong: Corrosion, 2000, vol. 56 (3), pp. 289–97

    CAS  Google Scholar 

  9. S.J. Goodwin, B. Quayle, F.W. Noble: Corr.-Nace, 1987, vol. 43 (12), pp. 743–47

    CAS  Google Scholar 

  10. Z. Fang, Y.S. Wu, L. Zhang, J.Q. Li: Corrosion, 1998, vol. 54 (5), pp. 339–46

    CAS  Google Scholar 

  11. U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, P. Rodriguez: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2881–87

    Google Scholar 

  12. M. Verneau and B. Bonnefois: 3rd Eur. Conf. on Corrosion, Proc. Conf., CEFRACOR, Lyon, France, 1997, pp. C5.1–C5.6

  13. Y. Jun Oh, J. Hwa Hong: J. Nucl. Mater., 2000, vol. 278, pp. 242–50

    Article  Google Scholar 

  14. D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, P.K. De: Acta Mater., 2002, vol. 50, pp. 4587–4601

    Article  CAS  Google Scholar 

  15. David L. Reichert, Glenn E. Stoner: J. Electrochem Soc., 1990, vol. 137 (2), pp. 411–13

    Article  CAS  Google Scholar 

  16. M.H. Seo, Y.J. Oh, W.S. Ryu, B.S. Chun, J.H. Hong: J. Kor. Inst. Met. Mater., 1998, vol. 36 (6), pp. 918–23

    CAS  Google Scholar 

  17. R. Requiz, I. Alvarez: Mater. Sci. Forum, 1998, vols. 289–292 (2), pp. 1007–17

    Article  Google Scholar 

  18. B.S. Covino Jr., S.D. Cramer, J.H. Russell, J.W. Simmons: Corr.-NACE, 1997, vol. 53 (7), pp. 525–36

    CAS  Google Scholar 

  19. T. Amadou, C. Braham, H. Sidhom: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3499–3513

    Article  CAS  Google Scholar 

  20. Z. Fang, L. Zhang, Y.S. Wu, J.Q. Li, D.B. Sun, G. Jiang, Z.M. Cui: Corrosion, 1995, vol. 51 (2), pp. 124–30

    CAS  Google Scholar 

  21. H. Huang, C. Lui, S. Chen: Corr.-Nace, 1992, vol. 48 (6), pp. 509–13

    Article  CAS  Google Scholar 

  22. K.J. Stoner: Proc. Conf. Computer-Aided Microscopy and Metallography, Charlotte, NC, July 25–26, 1989, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 171–82

  23. H.E. Buhler, L. Gerlach, H. Schlerkmann, W. Schwenk, M. Shoeib: Werkstoffe Korr., 2001, vol. 52, pp. 65–70

    Article  CAS  Google Scholar 

  24. W.L. Clarke: General Electric Co. Report No. NUREG/CR-1095, GEAP-248888, R-5, San Jose, CA, 1981, p. 85

  25. ASTM G108, ASTM, New York, NY

  26. NF EN ISO 3651-2, AFNOR, France, 1998

  27. NF EN ISO 3651-1, AFNOR, France, 1998

  28. Practice A262-98: Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM, New York, NY, 1998

  29. Test Method G28-97: Standard Test Methods of Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys, ASTM, New York, NY, 1997

  30. H. Sidhom: Ph.D. Thesis, University of Paris XI, Paris, 1990

  31. H. Sahlaoui: Ph.D. Thesis, University of Tunis El Manar, Tunis, 2003

  32. H. Sahlaoui, H. Sidhom, P. Philibert: Acta Mater., 2002, vol. 50, pp. 1383–92

    Article  CAS  Google Scholar 

  33. H. Sahlaoui, K. Maklouf, H. Sidhom, P. Philibert: Mater. Sci. Eng. A, 2004, vol. 372, pp. 98–108

    Article  CAS  Google Scholar 

  34. G.S. Was, H.H. Tischner, R.M. Latanision: Metall. Trans. A, 1981, vol. 12A, pp. 1397–1408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sidhom.

Additional information

Manuscript submitted July 24, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidhom, H., Amadou, T., Sahlaoui, H. et al. Quantitative Evaluation of Aged AISI 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods. Metall Mater Trans A 38, 1269–1280 (2007). https://doi.org/10.1007/s11661-007-9114-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9114-9

Keywords

Navigation