Skip to main content
Log in

Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The corrosion behavior and mechanical properties of 316L stainless steel (SS) fabricated via selective laser melting (SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316L SS in the XOZ plane were smaller than those of the SLMed 316L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316L was expected to exhibit higher strength but lower ductility than the wrought 316L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or (Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316L in FeCl3 solution was more serious after long-term service, indicating poor durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive manufacturing of metallic components-process, structure and properties, Prog. Mater. Sci., 92(2018), p. 112.

    Article  Google Scholar 

  2. H.P. Duan, X. Liu, X.Z. Ran, J. Li, and D. Liu, Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition, Int. J. Miner. Metall. Mater., 24(2017), p. 1027.

    Article  Google Scholar 

  3. F. Mao, C. Dong, and D.D. Macdonald, Effect of octadecylamine on the corrosion behavior of type 316SS in acetate buffer, Corros. Sci., 98(2015), p. 192.

    Article  Google Scholar 

  4. X.W. Lei, H.Y. Wang, F.X. Mao, J.P. Zhang, A.Q. Fu, Y.R. Feng, and D.D. Macdonald, Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution, Corros. Sci., 131(2018), p. 164.

    Article  Google Scholar 

  5. C.F. Dong, A.Q. Fu, X.G. Li, and Y.F. Cheng, Localized EIS characterization of corrosion of steel at coating defect under cathodic protection, Electrochim. Acta, 54(2008), No. 2, p. 628.

    Article  Google Scholar 

  6. Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong, and X.G. Li, Effects of solution ph and Cl- on electrochemical behaviour of an aermet100 ultra-high strength steel in acidic environments, Corros. Sci., 53(2011), No. 12, p. 4159.

    Article  Google Scholar 

  7. S.J. Gao, C.F. Dong, H. Luo, K. Xiao, X.M. Pan, and X.G. Li, Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on 304 stainless steel by magnetron sputtering, Electrochim. Acta, 114(2013), p. 233.

    Article  Google Scholar 

  8. L. Fan, H.Y. Chen, Y.H. Dong, L.H. Dong, and Y.S. Yin, Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 716.

    Article  Google Scholar 

  9. Y.Z. Zhang, C. Huang, and R. Vilar, Microstructure and properties of laser direct deposited CuNi17Al3Fe1.5Cr alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 325.

    Article  Google Scholar 

  10. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review, Mater. Des., 139(2018), p. 565.

    Article  Google Scholar 

  11. S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.P. Kruth, and J. Schrooten, The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomater., 8(2012), No. 7, p. 2824.

    Article  Google Scholar 

  12. G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira, A. Mateus, P. Carreira, N. Alves, F.S. Silva, and O. Carvalho, Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting, Mater. Sci. Eng. A, 657(2016), p. 43.

    Article  Google Scholar 

  13. F.X. Xie, X.B. He, S.L. Cao, and X.H. Qu, Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, J. Mater. Process. Technol., 213(2013), No. 6, p. 838.

    Article  Google Scholar 

  14. A. Röttger, K. Geenen, M. Windmann, F. Binner, and W. Theisen, Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material, Mater. Sci. Eng. A, 678(2016), p. 365.

    Article  Google Scholar 

  15. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting, Mater. Sci. Eng. A, 625(2015), p. 221.

    Article  Google Scholar 

  16. X.Q. Ni, D.C. Kong, W.H. Wu, L. Zhang, C.F. Dong, B.B. He, L. Lu, K.Q. Wu, and D.X. Zhu, Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds, J. Mater. Eng. Perform., 27(2018), No. 7, p. 3667.

    Article  Google Scholar 

  17. N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, and C. Yang, Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes, Corros. Sci., 111(2016), p. 703.

    Article  Google Scholar 

  18. G.Q. Yang, J.K. Mo, Z.Y. Kang, F.A. List, J.B. Green, S.S. Babu, and F.Y. Zhang, Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells, Int. J. Hydrogen Energy, 42(2017), No. 21, p. 14734.

    Article  Google Scholar 

  19. B.R. Hou, X.G. Li, X.M. Ma, C.W. Du, D.W. Zhang, M. Zheng, W.C. Xu, D.Z. Lu, and F.B. Ma, The cost of corrosion in China, npj Mater. Degrad., 1(2017), art. No. 4.

    Google Scholar 

  20. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441.

    Article  Google Scholar 

  21. D.C. Kong, C.F. Dong, Y.H. Fang, K. Xiao, C.Y. Guo, G. He, and X.G. Li, Long-term corrosion of copper in hot and dry atmosphere in Turpan, China, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2977.

    Article  Google Scholar 

  22. D.C. Kong, C.F. Dong, X.Q. Ni, A.N. Xu, C. He, K. Xiao, and X.G. Li, Long-term polarisation and immersion for copper corrosion in high-level nuclear waste environment, Mater. Corros., 68(2017), No. 10, p. 1070.

    Article  Google Scholar 

  23. D.C. Kong, C.F. Dong, X.Q. Ni, C. Man, K. Xiao, and X.G. Li, Insight into the mechanism of alloying elements (Sn,Be) effect on copper corrosion during long-term degradation in harsh marine environment, Appl. Surf. Sci., 455(2018), p. 543.

    Article  Google Scholar 

  24. H. Luo, C.F. Dong, K. Xiao, and X.G. Li, Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution, Appl. Surf. Sci., 258(2011), No. 1, p. 631.

    Article  Google Scholar 

  25. C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking, Int. J. Hydrogen Energy, 34(2009), No. 24, p. 9879.

    Article  Google Scholar 

  26. C.F. Dong, X.G. Li, Z.Y. Liu, and Y.R. Zhang, Hydrogen-induced cracking and healing behaviour of X70 steel, J. Alloys Compd., 484(2009), No. 1–2, p. 966.

    Article  Google Scholar 

  27. G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C.R. Hutchinson, On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting, J. Electrochem. Soc., 164(2017), No. 6, p. 250.

    Article  Google Scholar 

  28. R.F. Schaller, A. Mishra, J.M. Rodelas, J.M. Taylor, and E.J. Schindelholz, The role of microstructure and surface finish on the corrosion of selective laser melted 304L, J. Electrochem. Soc., 165(2018), No. 5, p. 234.

    Article  Google Scholar 

  29. W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform., 23(2014), No. 6, p. 1917.

    Article  Google Scholar 

  30. P. Guo, B. Zou, C.Z. Huang, and H.B. Gao, Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition, J. Mater. Process. Technol., 240(2017), p. 12.

    Article  Google Scholar 

  31. J.R. Trelewicz, G.P. Halada, O.K. Donaldson, and G. Manogharan, Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel, JOM, 68(2016), No. 3, p. 850.

    Article  Google Scholar 

  32. Y. Chen, J.X. Zhang, X.H. Gu, N.W. Dai, P. Qin, and L.C. Zhang, Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes, J. Alloys Compd., 747(2018), p. 648.

    Article  Google Scholar 

  33. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, and L. Alzina, Functionally graded inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties, Mater. Des., 114(2017), p. 441.

    Article  Google Scholar 

  34. D.C. Kong, X.Q. Ni, C.F. Dong, X.W. Lei, L. Zhang, C. Man, J.Z. Yao, X.Q. Cheng, and X.G. Li, Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting, Mater. Des., 152(2018), p. 88.

    Article  Google Scholar 

  35. D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, C. Man, J.Z. Yao, K. Xiao, and X.G. Li, Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells, Electrochim. Acta, 276(2018), p. 293.

    Article  Google Scholar 

  36. R.F. Schaller, J.M. Taylor, J. Rodelas, and E.J. Schindelholz, Corrosion properties of powder bed fusion additively manufactured 17–4 PH stainless steel, Corrosion, 73(2017), No. 7, p. 796.

    Article  Google Scholar 

  37. S.Q. Zheng, C.Y. Li, Y.M. Qi, L.Q. Chen, and C.F. Chen, Mechanism of (Mg,Al,Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion, Corros. Sci., 67(2013), p. 20.

    Article  Google Scholar 

  38. C. Man, C.F. Dong, K. Xiao, Q. Yu, and X.G. Li, The combined effect of chemical and structural factors on pitting corrosion induced by MnS-(Cr,Mn,Al)O duplex inclusions, Corrosion, 74(2018), No. 3, p. 312.

    Article  Google Scholar 

  39. D.D. Macdonald, The history of the point defect model for the passive state: A brief review of film growth aspects, Electrochim. Acta, 56(2011), No. 4, p. 1761.

    Article  Google Scholar 

  40. D.C. Kong, C.F. Dong, Z.R. Zheng, F.X. Mao, A.N. Xu, X.Q. Ni, C. Man, J.Z. Yao, K. Xiao, and X.G. Li, Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM, Appl. Surf. Sci., 440(2018), p. 245.

    Article  Google Scholar 

  41. D.C. Kong, A.N. Xu, C.F. Dong, F.X. Mao, K. Xiao, X.G. Li, and D.D. Macdonald, Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions, Corros. Sci., 116(2017), p. 34.

    Article  Google Scholar 

  42. D.C. Kong, C.F. Dong, M.F. Zhao, X.Q. Ni, C. Man, and X.G. Li, Effect of chloride concentration on passive film properties on copper, Corros. Eng. Sci. Technol., 53(2017), No. 2, p. 122.

    Article  Google Scholar 

  43. C.F. Dong, F.X. Mao, S.J. Gao, S. Sharifi-Asl, P. Lu, and D.D. Macdonald, Passivity breakdown on copper: Influence of temperature, J. Electrochem. Soc., 163(2016), No. 13, p. 707.

    Article  Google Scholar 

  44. M. Suzuki, R. Yamaguchi, K. Murakami, and M. Nakada, Inclusion particle growth during solidification of stainless steel, ISIJ Int., 41(2007), No. 3, p. 247.

    Article  Google Scholar 

  45. Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, and D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scripta Mater., 141(2017), p. 94.

    Article  Google Scholar 

  46. W.D. Stewart and D.E. Williams, The initiation of pitting corrosion on austenitic stainless steel: On the role and importance of sulfide inclusions, Corros. Sci., 33(1992), No. 3, p. 457.

    Article  Google Scholar 

  47. K. Geenen, A. Röttger, and W. Theisen, Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting, Mater. Corros., 68(2017), No. 7, p. 764.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605), the Shanghai Sailing Program (No. 17YF1405400), and the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Xq., Kong, Dc., Wen, Y. et al. Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int J Miner Metall Mater 26, 319–328 (2019). https://doi.org/10.1007/s12613-019-1740-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1740-x

Keywords

Navigation