Skip to main content
Log in

Bone tissue engineering application of 3-aminopropyltrimethoxysilane functionalized Au/Ag bimetallic nanoparticles incorporated hydroxyapatite bioceramic

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Despite having excellent osteoconductivity and biocompatibility, hydroxyapatite (HA) exhibits inadequate mechanical properties and bacterial susceptibility, which limits its medical applications. The present study aims to fabricate 3-aminopropyltrimethoxysilane (3-APTMS) functionalized gold (Au)-silver (Ag) nanoparticles incorporated in hydroxyapatite bioceramics to overcome this limitation. Thermogravimetric analysis (TGA), X-Ray diffraction, and scanning electron microscopy were carried out to understand the physical and chemical characteristics of the material. The maximum values of fracture toughness, hardness, compressive and flexural strength were measured for HA-10 Au/Ag NPs. Both quantitative and qualitative analyses of antibacterial behavior revealed that the adhesion of gram-positive (Staphylococcu aureus) and gram-negative (Eschericia coli) bacterial cells were reduced significantly after the incorporation of Au/Ag NPs as compared with the HA control. In addition, the effect of Au/Ag NPs incorporation on the cellular response was observed for the MG63 cell line. Both the quantitative and qualitative results indicate significantly enhanced cell proliferation with the incorporation of Au/Ag NPs as compared to HA. The addition of Au/Ag NPs in HA provides a material with appropriate mechanical, antibacterial, and cellular responses for further consideration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  1. T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161–2175 (2003). https://doi.org/10.1016/S0142-9612(03)00044-9

    Article  CAS  Google Scholar 

  2. N. Miyata, K.I. Fuke, Q. Chen, M. Kawashita, T. Kokubo, T. Nakamura, Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing effect of CaO and PTMO contents. Biomaterials 23, 3033–3040 (2002). https://doi.org/10.1016/S0142-9612(02)00065-0

    Article  CAS  Google Scholar 

  3. H.M. Kim, H. Takadama, T. Kokubo, S. Nishiguchi, T. Nakamura, Formation of a bioactive graded bioactive surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment. Biomaterials 21, 353–358 (2000). https://doi.org/10.1016/S0142-9612(99)00190-8

    Article  CAS  Google Scholar 

  4. P. Feng, M. Niu, C. Gao, S. Peng, C. Shuai, A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci. Rep. 4, 5599 (2014). https://doi.org/10.1038/srep05599

    Article  CAS  Google Scholar 

  5. A. Haider, S. Haider, S.S. Han, I.K. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 7, 7442–7458 (2017). https://doi.org/10.1039/C6RA26124H

    Article  CAS  Google Scholar 

  6. D.K. Khajuria, R. Razdan, D.R. Mahapatra, Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur. J. Pharm. Sci. 66, 173–183 (2015). https://doi.org/10.1016/j.ejps.2014.10.015

    Article  CAS  Google Scholar 

  7. M. Okada, T. Matsumoto, Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn. Dent. Sci. Rev. 51, 85–95 (2015). https://doi.org/10.1016/j.jdsr.2015.03.004

    Article  Google Scholar 

  8. G. Radha, N. Manjubaashini, S. Balakumar, Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. In vitro models 13, 1–27 (2023). https://doi.org/10.1007/s44164-023-00049-w

    Article  Google Scholar 

  9. R. Kumar, S. Mohanty, Hydroxyapatite: a versatile bioceramic for tissue engineering application. J. Inorg. Organomet. Polym. 32, 4461–4477 (2022). https://doi.org/10.1007/s10904-022-02454-2

    Article  CAS  Google Scholar 

  10. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011). https://doi.org/10.1016/j.actbio.2011.03.019

    Article  CAS  Google Scholar 

  11. X. Zhang, C. Zhang, Y. Lin, P. Hu, Y. Shen, K. Wang, S. Meng, Y. Chai, X. Dai, X. Liu, Y. Liu, X. Mo, C. Cao, S. Li, X. Deng, L. Chen, Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 10, 7279–7286 (2016). https://doi.org/10.1021/acsnano.6b02247

    Article  CAS  Google Scholar 

  12. T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, Y. Lin, Nanomaterials and bone regeneration. Bone Res. 3, 1–7 (2015). https://doi.org/10.1038/boneres.2015.29

    Article  CAS  Google Scholar 

  13. Y. Chen, C. Gan, T. Zhang, G. Yu, P. Bai, A. Kaplan, Lasersurface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl. Phys. Lett. 86, 251905 (2005). https://doi.org/10.1063/1.1951054

    Article  CAS  Google Scholar 

  14. Y.C. Tsui, C. Doyle, T.W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials 19, 2015–2029 (1998). https://doi.org/10.1016/S0142-9612(98)00103-3

    Article  CAS  Google Scholar 

  15. H. Li, K.A. Khor, P. Cheang, Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surf. Coat. Technol. 155, 21–32 (2002). https://doi.org/10.1016/S0257-8972(02)00026-9

    Article  CAS  Google Scholar 

  16. X. Zhang, W. Chaimayo, C. Yang, J. Yao, B.L. Miller, M.Z. Yates, Silver-hydroxyapatite composite coatings with enhanced antimicrobial activities through heat treatment. Surf. Coat. Technol. 325, 39–45 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.013

    Article  CAS  Google Scholar 

  17. S.U. Victor, V.B.J. Roberto, Gold and silver nanotechnology on medicine. J. Chem. Biochem. 3, 21–33 (2015)

    Article  Google Scholar 

  18. M. Ribeiro, M.P. Ferraz, F.J. Monteiro, M.H. Fernandes, M.M. Beppu, D. Mantione, H. Sardon, Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomed. Nanotechnol. Biol. Med. 13, 231–239 (2017). https://doi.org/10.1016/j.nano.2016.08.026

    Article  CAS  Google Scholar 

  19. D.N. Heo, W.K. Ko, M.S. Bae, J.B. Lee, D.W. Lee, W. Byun, C.H. Lee, E.C. Kim, B.Y. Jung, I.K. Kwon, Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J. Mater. Chem. B 2, 1584–1593 (2014). https://doi.org/10.1039/C3TB21246G

    Article  CAS  Google Scholar 

  20. H. Geng, G. Poologasundarampillai, N. Todd, A. Devlin-Mullin, K.L. Moore, Z. Golrokhi, J.B. Gilchrist, E. Jones, R.J. Potter, C. Sutcliffe, M. O’Brien, D.W.L. Hukins, S. Cartmell, C.A. Mitchell, P.D. Lee, Biotransformation of Silver Released from Nanoparticle Coated Titanium Implants Revealed in Regenerating Bone. ACS Appl. Mater. Interfaces 9, 21169–21180 (2017). https://doi.org/10.1021/acsami.7b05150

    Article  CAS  Google Scholar 

  21. K. Glenske, P. Donkiewicz, A. Köwitsch, N. Milosevic-Oljaca, P. Rider, S. Rofall, J. Franke, O. Jung, R. Smeets, R. Schnettler, S. Wenisch, M. Barbeck, Applications of metals for bone regeneration Int. J. Mol. Sci 19, 826 (2018). https://doi.org/10.3390/ijms19030826

    Article  CAS  Google Scholar 

  22. H. Qin, C. Zhu, Z. An, Y. Jiang, Y. Zhao, J. Wang, X. Liu, B. Hui, X. Zhang, Y. Wang, Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int. J. Nanomed. 9, 2469–2478 (2014). https://doi.org/10.2147/IJN.S59753

    Article  Google Scholar 

  23. M. Mahmood, Z. Li, D. Casciano, M.V. Khodakovskaya, T. Chen, A. Karmakar, E. Dervishi, Y. Xu, T. Mustafa, F. Watanabe, A. Fejleh, M. Whitlow, M. Al-Adami, A. Ghosh, A.S. Biris, Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. J. Cell. Mol. Med. 15, 2297–2306 (2011). https://doi.org/10.1111/j.1582-4934.2010.01234.x

    Article  CAS  Google Scholar 

  24. T. Qing, M. Mahmood, Y. Zheng, A.S. Biris, L. Shi, D.A. Casciano, A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells. J. Appl. Toxicol. 38(2), 172–179 (2018). https://doi.org/10.1002/jat.3528

    Article  CAS  Google Scholar 

  25. S.H. Hsu, H.J. Yen, C.L. Tsai, The response of articular chondrocytes to type II collagen- Au nanocomposites. Artif. Organs 31, 854–868 (2007). https://doi.org/10.1111/j.1525-1594.2007.00482.x

    Article  CAS  Google Scholar 

  26. D. Liu, J. Zhang, C. Yi, M. Yang, The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Sci. Bull. 55, 1013–1019 (2010). https://doi.org/10.1007/s11434-010-0046-1

    Article  CAS  Google Scholar 

  27. P. Gao, H. Zhang, Y. Liu, B. Fan, X. Li, X. Xiao, P. Lan, M. Li, L. Geng, D. Liu, Y. Yuan, Q. Lian, J. Lu, Z. Guo, Z. Wang, Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo Sci. Rep. 6, 1–14 (2016). https://doi.org/10.1038/srep23367

    Article  CAS  Google Scholar 

  28. M. Alvarez, N. Davidenko, R. García, A. Alonso, R. Rodríguez, R.M. Guerra, R. Sastre, Kinetic study of the photopolymerization of a bisphenol-A-bis(glycidylmethacrylate)/ triethyleneglycol dimethacrylate system in hydroxyapatite-filled composites. Polym. Int. 48, 699–704 (1999). https://doi.org/10.1002/(SICI)1097-0126(199908)48:8%3c699::AID-PI204%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  29. H. Bala, W. Fu, Y. Guo, J. Zhao, Y. Jiang, X. Ding, K. Yu, M. Li, Z. Wang, In situ preparation and surface modification of barium sulfate nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 274, 71–76 (2006). https://doi.org/10.1016/j.colsurfa.2005.08.050

    Article  CAS  Google Scholar 

  30. C.M. Vaz, R.L. Reis, A.M. Cunha, Use of coupling agents to enhance the interfacial interactions in starch–EVOH/hydroxyapatite composites. Biomaterials 23, 629–635 (2002). https://doi.org/10.1016/S0142-9612(01)00150-8

    Article  CAS  Google Scholar 

  31. W.L. Tham, W.S. Chow, Z.A.M. Ishak, The effect of 3-(trimethosilyl) propylmethacrylate on the mechanical, thermal, and morphological properties of poly(methyl methacrylate)/hydroxyapatite composites. J. Appl. Polym. Sci. 118, 218–228 (2010). https://doi.org/10.1002/app.32111

    Article  CAS  Google Scholar 

  32. A.M.P. Dupraz, J.R. de Wijn, V.D. Meer, K. de Groot, Characterization of silane treated hydroxyapatite powders for use as filler in biodegradable composites. J. Biomed. Mater. Res. 30, 231–238 (1996)

    Article  CAS  Google Scholar 

  33. C.L.E. Domingo, J. Fraile, Grafting of trialkoxysilane on the surface of nanoparticles by conventional wet alcoholic and supercritical carbon dioxide deposition methods. J. Supercrit. Fluids 37, 72–86 (2006). https://doi.org/10.1016/j.supflu.2005.06.013

    Article  CAS  Google Scholar 

  34. O.G. Cisneros-Pineda, W.H. Kao, M.I. Loría-Bastarrachea, Y. Veranes-Pantoja, J.V. Cauich-Rodríguez, J.M. Cervantes-Uc, Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations. J. Mater. Sci. Eng. C 40, 157–163 (2014). https://doi.org/10.1016/j.msec.2014.03.064

    Article  CAS  Google Scholar 

  35. P.C. Pandey, R. Singh, Y. Pandey, Controlled synthesis of functional Ag, Ag–Au/Au–Ag nanoparticles and their Prussian blue nanocomposites for bioanalytical applications. RSC Adv. 5, 49671–49679 (2015). https://doi.org/10.1039/C5RA06251A

    Article  CAS  Google Scholar 

  36. M. Rai, S.D. Deshmukh, A.P. Ingle, I.R. Gupta, M. Galdiero, S. Galdiero, Metal nanoparticles: The protective nanoshield against virus infection. Crit. Rev. Microbiol. 42(1), 46–56 (2016). https://doi.org/10.3109/1040841X.2013.879849

    Article  CAS  Google Scholar 

  37. V. Gopinath, S. Priyadarshini, M.F. Loke, J. Arunkumar, E. Marsili, D. MubarakAli, P. Velusamy, J. Vadivelu, Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem. 10(8), 1107–1117 (2017). https://doi.org/10.1016/j.arabjc.2015.11.011

    Article  CAS  Google Scholar 

  38. M. Kobayashi, S. Nihonmatsu, T. Okawara, H. Onuki, H. Sakagami, H. Nakajima, H. Takeishi, J. Shimada, Adhesion and Proliferation of Osteoblastic Cells on Hydroxyapatite-dispersed Ti-based Composite Plate. In Vivo 33(4), 1067–1079 (2019). https://doi.org/10.21873/invivo.11575.PMID:31280194;PMCID:PMC6689340

    Article  CAS  Google Scholar 

  39. S. Wang, S. Wen, M. Shen, R. Guo, X. Cao, J. Wang, X. Shi, Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int. J. Nanomed. 6, 3449–3459 (2011). https://doi.org/10.2147/IJN.S27166

    Article  CAS  Google Scholar 

  40. S. Rehman, K. Khan, M. Mujahid, S. Nosheen, Synthesis of nano-hydroxyapatite and its rapid mediated surface functionalization by silane coupling agent. Mater. Sci. Eng., C 58, 675–681 (2016). https://doi.org/10.1016/j.msec.2015.09.014

    Article  CAS  Google Scholar 

  41. E. Ji, Y.H. Song, J.H. Seo, K.I. Joo, Utilization of functionalized silane coatings for enhanced mechanical properties of hydroxyapatite filler. Korean J. Chem. Eng. (2023). https://doi.org/10.1007/s11814-023-1396-0

    Article  Google Scholar 

  42. J. Jiao, S. Zhang, X. Qu, B. Yue, Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front. Cell Infect. Microbiol. 11, 693939 (2021). https://doi.org/10.3389/fcimb.2021.693939

    Article  CAS  Google Scholar 

  43. N.A. Abdul Halim, M.Z. Hussein, M.K. Kandar, Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. Int. J. Nanomed. 16, 6477–6496 (2021). https://doi.org/10.2147/IJN.S298936

    Article  Google Scholar 

  44. C.C.V. Cintra, D.A. Ferreira-Ermita, F.H. Loures, P.M. Araújo, I.M. Ribeiro, F.R. Araújo, F.L. Valente, E.C.C. Reis, A.C.F. Costa, S.M. Bicalho, A.P. Borges, In vitro characterization of hydroxyapatite and cobalt ferrite nanoparticles compounds and their biocompatibility in vivo. J. Mater. Sci. Mater. Med. 33(2), 21 (2022). https://doi.org/10.1007/s10856-022-06640-z

    Article  CAS  Google Scholar 

  45. C. Wang, J. Feng, J. Zhou, X. Huang, L. Wang, G. Liu, J. Cheng, Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride. J. Mater. Sci. 55, 14501–14515 (2020). https://doi.org/10.1007/s10853-020-05015-5

    Article  CAS  Google Scholar 

  46. S. Mondal, G. Hoang, P. Manivasagan, M.S. Moorthy, T.T.V. Phan, H.H. Kim, T.P. Nguyen, J. Oh, Rapid microwave-assisted synthesis of gold loaded hydroxyapatite collagen nano-bio materials for drug delivery and tissue engineering application. Ceram. Int. 45(3), 2977–2988 (2019). https://doi.org/10.1016/j.ceramint.2018.10.016

    Article  CAS  Google Scholar 

  47. A.A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, O. Kutlu, Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 25(9), 2193 (2020). https://doi.org/10.3390/molecules25092193.PMID:32397080;PMCID:PMC7248934

    Article  CAS  Google Scholar 

  48. V. Chandrakala, V. Aruna, G. Angajala, Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Materials 5, 1593–1615 (2022). https://doi.org/10.1007/s42247-021-00335-x

    Article  CAS  Google Scholar 

  49. A.S. Verma, D. Kumar, A.K. Dubey, Dielectric and electrical response of hydroxyapatite-Na0.5K0.5NbO3 bioceramic composite. Ceram. Int. 45, 329–3305 (2019). https://doi.org/10.1016/j.ceramint.2018.10.240

    Article  CAS  Google Scholar 

  50. S.K. Arumugam, A.M. Rajam, N. Natarajan, U. Rao, C. Rose, T.P. Sastry, Formation of gold nanoparticles on hydroxyapatite surface for enhancement of blood compatibility via a negative cilia concept. J. Biomed. Nanotechnol. 2(1), 46–52 (2006). https://doi.org/10.1166/jbn.2006.009

    Article  CAS  Google Scholar 

  51. H. Furedi-Milhofer, V. Hlady, F.S. Baker, R.A. Beebe, N.W. Wikholm, J.S. Kittelberger, Temperature-programmed dehydration of hydroxyapatite. J. Colloid Interf. Sci. 70(1), 1–9 (1979). https://doi.org/10.1016/0021-9797(79)90002-X

    Article  CAS  Google Scholar 

  52. B. Sreedhar, D. Keerthi Devi, A. Sai Neetha, V. Pavan Kumar, K.V.R. Chary, Green synthesis of gum-acacia assisted gold-hydroxyapatite nanostructures e Characterization and catalytic activity. Mater. Chem. Phys. 153, 23–31 (2015). https://doi.org/10.1016/j.matchemphys.2014.12.031

    Article  CAS  Google Scholar 

  53. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32, 1005–1012 (1999). https://doi.org/10.1016/S0021-9290(99)00111-6

    Article  CAS  Google Scholar 

  54. D.T. Reilly, A.H. Burstein, The mechanical properties of corticalbone. J. Bone Joint Sur. 57A, 1001–1022 (1974)

    Article  Google Scholar 

  55. E.D. Sedlin, A rheological model for cortical bone: a study of thephysical properties of human femoral samples, Acta Orthop. Scan. 36, 1–77 (1965). https://doi.org/10.3109/ort.1965.36.suppl-83.01

    Article  Google Scholar 

  56. S. Sahmani, S. Saber-Samandari, A. Khandan, M.M. Aghdam, Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation. J. Mech. Behav. Biomed. Mater. 95, 76–88 (2019). https://doi.org/10.1016/j.jmbbm.2019.03.014

    Article  CAS  Google Scholar 

  57. G.R. Irwin, D.C. Washington, Analysis of Stresses and Strains near the End of a Crack Traversing a Plate. J. Appl. Mech. 24, 361–364 (1957)

    Article  Google Scholar 

  58. W.J. Sun, S. Kothari, C.C. Sun, The relationship among tensile strength, Young’s modulus, and indentation hardness of pharmaceutical compacts. Powder Technol. 331, 1–6 (2018). https://doi.org/10.1016/j.powtec.2018.02.051

    Article  CAS  Google Scholar 

  59. A.S. Verma, D. Kumar, A.K. Dubey, A review of an innovative concept to increase the toughness of the ceramics by piezoelectric secondary phases. Ceram. Int. 44, 16119–16127 (2018). https://doi.org/10.1016/j.ceramint.2018.06.063

    Article  CAS  Google Scholar 

  60. A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gramnegative bacteria. Nanomed. Nanotechnol. Biol. Med. 6, 103–109 (2010). https://doi.org/10.1016/j.nano.2009.04.006

    Article  CAS  Google Scholar 

  61. G. Tan, S. Wang, Y. Zhu, L. Zhou, P. Yu, X. Wang, T. He, J. Chen, C. Mao, C. Ning, Surface-selective preferential production of reactive oxygen species on piezoelectric ceramics for bacterial killing. ACS Appl. Mater. Interfaces 8, 24306–24309 (2016). https://doi.org/10.1021/acsami.6b07440

    Article  CAS  Google Scholar 

  62. K.S. Ong, Y.L. Cheow, S.M. Lee, The role of reactive oxygen species in the antimicrobial activity of Pyochelin. J. Adv. Res. 8, 393–398 (2017). https://doi.org/10.1016/j.jare.2017.05.007

    Article  CAS  Google Scholar 

  63. B. Blanc, C. Gerez, S.O. de Choudens, Assembly of Fe/S proteins in bacterial systems. Biochim. Biophys. Acta Mol. Cell Res. 1853, 1436–1447 (2015). https://doi.org/10.1016/j.bbamcr.2014.12.009

    Article  CAS  Google Scholar 

  64. A.S. Verma, A. Sharma, A. Kumar, A. Mukhopadhyay, D. Kumar, A.K. Dubey, Multifunctional response of piezoelectric sodium potassium niobate (NKN)-toughened hydroxyapatite-based biocomposites. ACS Appl. Biomater. 3(8), 5287–5299 (2020). https://doi.org/10.1021/acsabm.0c00642

    Article  CAS  Google Scholar 

  65. D. Grotto, L.S. Maria, J. Valentini, C. Paniz, G. Schmitt, S.C. Garcia, V.J. Pomblum, J.B.T. Rocha, M. Farina, Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova 32, 169–174 (2009). https://doi.org/10.1590/S0100-40422009000100032

    Article  CAS  Google Scholar 

  66. M.H. Hadwan, Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 19, 7 (2018). https://doi.org/10.1186/s12858-018-0097-5

    Article  CAS  Google Scholar 

  67. K.M. Schaich, 2016 Analysis of Lipid and Protein Oxidation in Fats Oils and Foods. Chapter 1, AOCS Press, Champaign

  68. M.P. Murphy, A. Holmgren, N.G. Larsson, B. Halliwell, C.J. Chang, B. Kalyanaraman, S.G. Rhee, P.J. Thornalley, L. Partridge, D. Gems, T. Nyström, Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011). https://doi.org/10.1016/j.cmet.2011.03.010

    Article  CAS  Google Scholar 

  69. X.Q. Chen, X.Z. Tian, I. Shin, J. Yoon, Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 40, 4783–4804 (2011). https://doi.org/10.1039/C1CS15037E

    Article  CAS  Google Scholar 

  70. M. Solioz, A. Odermatt, Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270, 9217–9221 (1995). https://doi.org/10.1074/jbc.270.16.9217

    Article  CAS  Google Scholar 

  71. U. Klueh, V. Wagner, S. Kelly, A. Johnson, J.D. Bryers, Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J. Biomed. Mater. Res. 53, 621–631 (2000). https://doi.org/10.1002/1097-4636(2000)53:6%3c621::AID-JBM2%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  72. R.L. Davies, S.F. Etris, The development and functions of silver in water purification and disease control. Catal. Today 36, 107–114 (1997). https://doi.org/10.1016/S0920-5861(96)00203-9

    Article  CAS  Google Scholar 

  73. H.Y. Song, K.K. Ko, I.H. Oh, B.T. Lee, Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cells Mater. 11, 58 (2006)

    Google Scholar 

  74. S. Egger, R.P. Lehmann, M.J. Height, M.J. Loessner, M. Schuppler, Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 75, 2973–2976 (2009). https://doi.org/10.1128/AEM.01658-08

    Article  CAS  Google Scholar 

  75. P.D. Bragg, D.J. Rannie, The effect of silver ios on the respiratory chain of E coli. Can. J. Microbiol. 20, 883–889 (1974). https://doi.org/10.1139/m74-135

    Article  CAS  Google Scholar 

  76. T. Emami, R. Madani, F. Golchinfar, A. Shoushtary, S.M. Amini, Comparison of gold nanoparticle conjugated secondary antibody with non-gold secondary antibody in an ELISA kit model. Monocl. Antibodies Immunodiagn. Immunother. 34, 366–370 (2015). https://doi.org/10.1089/mab.2015.0021

    Article  CAS  Google Scholar 

  77. A.A.K. Zarchi, S.M. Amini, A. Salimi, S. Kharazi, Synthesis and characterisation of liposomal doxorubicin with loaded gold nanoparticles. IET Nanobiotechnol. 12, 846–849 (2018). https://doi.org/10.1049/iet-nbt.2017.0321

    Article  Google Scholar 

  78. Y. Zhang, P. Wang, Y. Wang, J. Li, D. Qiao, R. Chen, W. Yang, F. Yan, Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy. Int. J. Nanomed. 16, 61 (2021). https://doi.org/10.2147/IJN.S282246

    Article  Google Scholar 

  79. H. Samadian, H. Khastar, A. Ehterami, M. Salehi, Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study. Sci. Rep. 11, 1–11 (2021). https://doi.org/10.1038/s41598-021-93367-6

    Article  CAS  Google Scholar 

  80. C. Yi, D. Liu, C.C. Fong, J. Zhang, M. Yang, Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4, 6439–6448 (2010). https://doi.org/10.1021/nn101373r

    Article  CAS  Google Scholar 

  81. H. Liang, X. Xu, X. Feng, L. Ma, X. Deng, S. Wu, X. Liu, C. Yang, Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway. Int. J. Nanomed. (2019). https://doi.org/10.2147/IJN.S213889

    Article  Google Scholar 

  82. Y. Zhang, P. Wang, H. Mao, Y. Zhang, L. Zheng, P. Yu, Z. Guo, L. Li, Q. Jiang, PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater. Design 197, 109231 (2021). https://doi.org/10.1016/j.matdes.2020.109231

    Article  CAS  Google Scholar 

  83. J. Ge, K. Liu, W. Niu, M. Chen, M. Wang, Y. Xue, C. Gao, P.X. Ma, B. Lei, Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 175, 19–29 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.027

    Article  CAS  Google Scholar 

  84. N.H. Daraghmeh, B.Z. Chowdhry, S.A. Leharne, M.M. Al Omari, A.A. Badwan, Profiles of drug substances. Excip. Relat. Methodol 36, 35–102 (2011). https://doi.org/10.1016/B978-0-12-387667-6.00002-6

    Article  CAS  Google Scholar 

  85. ASTM E3484–99 A. Standard test method for micro indentation hardness of materials. 1984.

  86. A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59, 371–372 (2006)

    Article  Google Scholar 

  87. Y.J. Garcia, A.J. Rodríguez-Malaver, N. Peñaloza, Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J. Neurosci. Methods 144, 127–135 (2005). https://doi.org/10.1016/j.jneumeth.2004.10.018

    Article  CAS  Google Scholar 

  88. E.D. Wills, Lipid peroxide formation in microsomes. Biochem. J. 113, 315–324 (1969). https://doi.org/10.1042/bj1130315

    Article  CAS  Google Scholar 

  89. B. Chance, A.C. Maehly, Assay of catalases and peroxidise. Methods Enzymol. 2, 764–775 (1955). https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from IIT (BHU) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MP: conceptualization, investigation, methodology, validation, writing—original draft. ASV: investigation, methodology. PCP: supervisor. RN: writing—original draft.

Corresponding authors

Correspondence to P. C. Pandey or Roger J. Narayan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roger Narayan was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 773 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Verma, A.S., Pandey, P.C. et al. Bone tissue engineering application of 3-aminopropyltrimethoxysilane functionalized Au/Ag bimetallic nanoparticles incorporated hydroxyapatite bioceramic. Journal of Materials Research 38, 4157–4174 (2023). https://doi.org/10.1557/s43578-023-01132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01132-4

Navigation