Skip to main content

Advertisement

Log in

Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is an ideal bone insert material due to its biocompatibility and osteoconductivity, but the poor mechanical properties limit its wide application in clinical practice. The aim of this work is to fabricate a novel composite that with similar porous structure to cortical bone and high mechanical properties by the addition of boron nitride (BN) and sintered in air at 1250 °C for 40 min. In mechanical properties, the maximum flexural strength, elastic modulus and fracture toughness are 94.04 MPa, 69.46 GPa and 1.16 MPa m1/2, respectively, which are improved by 20.56%, 12.87% and 8.41%, respectively. In the microscopy of surface and fracture surface, the porous structure similar to cortical bone is observed. There are microscale and nanoscale pores, and the pores present an interconnected structure. In vitro biocompatibility assessment, the addition of BN and its reaction product have no adverse effect on osteoblast viability, which even promotes osteogenic differentiation and mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Garcia-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121

    CAS  Google Scholar 

  2. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng, C 31:1245–1256

    CAS  Google Scholar 

  3. Johnson AJW, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30

    Google Scholar 

  4. Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    CAS  Google Scholar 

  5. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    CAS  Google Scholar 

  6. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    CAS  Google Scholar 

  7. Sansone V, Pagani D, Melato M (2013) The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinic Cases Min Bone Metab 10:34–40

    Google Scholar 

  8. Boger A, Bohner M, Heini P, Verrier S, Schneider E (2008) Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res Part B 86B:474–482

    CAS  Google Scholar 

  9. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Pt B Polym Phys 49:832–864

    CAS  Google Scholar 

  10. Wang KF, Zhou CC, Hong YL, Zhang XD (2012) A review of protein adsorption on bioceramics. Interface Focus 2:259–277

    Google Scholar 

  11. Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045

    CAS  Google Scholar 

  12. Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Namomed 1:317–332

    CAS  Google Scholar 

  13. Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395

    CAS  Google Scholar 

  14. Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230

    CAS  Google Scholar 

  15. Bellucci D, Sola A, Cannillo V (2016) Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J Biomed Mater Res Part A 104:1030–1056

    CAS  Google Scholar 

  16. Tan LL, Yu XM, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29:503–513

    CAS  Google Scholar 

  17. Chadha RK, Singh AP, Singh KL, Sharma C, Naithani V (2019) Influence of microwave processing and sintering temperature on the structure and properties of Sr/Zr doped hydroxyapatite. Mater Chem Phys 223:319–324

    CAS  Google Scholar 

  18. Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A (2011) Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J Mech Behav Biomed Mater 4:44–56

    CAS  Google Scholar 

  19. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6:1099–1140

    CAS  Google Scholar 

  20. Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A (2010) Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater 6:3782–3790

    CAS  Google Scholar 

  21. Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565–6572

    CAS  Google Scholar 

  22. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533

    CAS  Google Scholar 

  23. Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151

    CAS  Google Scholar 

  24. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    CAS  Google Scholar 

  25. Wang XJ, Xu SQ, Zhou SW, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    CAS  Google Scholar 

  26. Prajatelistia E, Han Y-H, Kim BN, Kim Y-M, Lee K, Jeong Y-K, Kim D-I, Kim K-H, Kim S (2013) Characterization of boron nitride-reinforced hydroxyapatite composites prepared by spark plasma sintering and hot press. J Ceram Soc Jpn 121:344–347

    CAS  Google Scholar 

  27. Danti S, Ciofani G, Moscato S, D'Alessandro D, Ciabatti E, Nesti C, Brescia R, Bertoni G, Pietrabissa A, Lisanti M, Petrini M, Mattoli V, Berrettini S (2013) Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology 24:465102

    Google Scholar 

  28. Mergen A, Aslanoglu VZ (2003) Low-temperature fabrication of anorthite ceramics from kaolinite and calcium carbonate with boron oxide addition. Ceram Int 29:667–670

    CAS  Google Scholar 

  29. Liu SJ, Sun J, Taylor R, Smith DJ, Newman N (2004) Microstructure and dielectric properties of Ba(Cd1/3Ta2/3)O3 microwave ceramics synthesized with a boron oxide sintering aid. J Mater Res 19:3526–3533

    CAS  Google Scholar 

  30. Soykan HS, Aslanoglu Z, Karakas Y (2006) Microstructure, mechanical and thermal properties of boron oxide added steatite ceramics. Adv Appl Ceram 105:270–273

    CAS  Google Scholar 

  31. Gao JJ, Song JP, Liang GX, An J, Cao L, Xie JC, Lv M (2017) Effects of HfC addition on microstructures and mechanical properties of TiC0.7N0.3-based and TiC0.5N0.5-based ceramic tool materials. Ceram Int 43:14945–14950

    CAS  Google Scholar 

  32. Nie JF, Zhou J, Huang XG, Wang L, Liu GZ, Cheng JP (2019) Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceram Int 45:13647–13655

    CAS  Google Scholar 

  33. Li K, Hu DD, Xie YT, Huang LP, Zheng XB (2018) Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. Nanotechnology 29:084001

    Google Scholar 

  34. Liu T, Chen Y, Lai D, Zhang L, Pan X, Chen J, Weng H (2019) Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: From physicochemical characteristics to in vitro biological properties. Mater Sci Eng C Mater Biol Appl 94:547–557

    CAS  Google Scholar 

  35. Wang PJ, Yu TB, Lv QL, Li SK, Ma XX, Yang GP, Xu DX, Liu X, Wang GT, Chen ZQ, Xing SC (2019) Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering. Colloid Surf B Biointerfaces 173:512–520

    CAS  Google Scholar 

  36. Xie XY, Hu KW, Fang DD, Shang LH, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002

    CAS  Google Scholar 

  37. Ribeiro CC, Gibson I, Barbosa MA (2006) The uptake of titanium ions by hydroxyapatite particles—structural changes and possible mechanisms. Biomaterials 27:1749–1761

    CAS  Google Scholar 

  38. Jun L, Shuping X, Shiyang G (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta Part A Mol Biomol Spectrosc 51:519–532

    Google Scholar 

  39. Prakash A, Sundaram KB (2017) Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets. Appl Surf Sci 396:484–491

    CAS  Google Scholar 

  40. Guimon C, Gonbeau D, Pfisterguillouzo G, Dugne O, Guette A, Naslain R, Lahaye M (1990) XPS study of BN thin-films deposited by CVD on SiC plane substrates. Surf Interface Anal 16:440–445

    CAS  Google Scholar 

  41. Zhang CY, Zhong XL, Wang JB, Yang GW (2003) Room-temperature growth of cubic nitride boron film by RF plasma enhanced pulsed laser deposition. Chem Phys Lett 370:522–527

    CAS  Google Scholar 

  42. Cooper DML, Matyas JR, Katzenberg MA, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74:437–447

    CAS  Google Scholar 

  43. Heidari F, Razavi M, Bahrololoom ME, Bazargan-Lari R, Vashaee D, Kotturi H, Tayebi L (2016) Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 65:338–344

    CAS  Google Scholar 

  44. Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406

    CAS  Google Scholar 

  45. R'Mili M, Massardier V, Merle P, Vincent H, Vincent C (1999) The effect of thermal exposure on the strength distribution of B4C-coated carbon fibers. Carbon 37:129–145

    CAS  Google Scholar 

  46. Araujo M, Karohl C, Elias RM, Barreto FC, Barreto DV, Canziani MEF, Carvalho AB, Jorgetti V, Moyses RMA (2016) The pitfall of treating low bone turnover: effects on cortical porosity. Bone 91:75–80

    Google Scholar 

  47. Chen WQ, Shao Y, Li X, Zhao G, Fu JP (2014) Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today 9:759–784

    CAS  Google Scholar 

  48. Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5:66–78

    CAS  Google Scholar 

  49. Arens D, Rothstock S, Windolf M, Boger A (2011) Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. J Mech Behav Biomed Mater 4:2081–2089

    CAS  Google Scholar 

  50. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854

    Google Scholar 

  51. Yao YT, Liu S, Swain MV, Zhang XP, Zhao K, Jian YT (2019) Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: an in vitro study. Mater Sci Eng C Mater Biol Appl 94:200–210

    CAS  Google Scholar 

  52. Song J, Jiang L, Liang G, Gao J, An J, Cao L, Xie J, Wang S, Lv M (2017) Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive. Ceram Int 43:8202–8207

    CAS  Google Scholar 

  53. Aguirre TG, Cramer CL, Torres VP, Hammann TJ, Holland TB, Ma K (2019) Effects of the addition of boron nitride nanoplate on the fracture toughness, flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering. J Mech Behav Biomed Mater 93:105–117

    CAS  Google Scholar 

  54. Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I (2008) Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol 206:221–230

    CAS  Google Scholar 

  55. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533

    CAS  Google Scholar 

  56. Tozar A, Karahan İH (2018) A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl Surf Sci 452:322–336

    CAS  Google Scholar 

  57. Boyacioglu O, Orenay-Boyacioglu S, Yildirim H, Korkmaz M (2018) Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J Trace Elem Med Biol 48:52–56

    CAS  Google Scholar 

  58. Alves EGL, Serakides R, Rosado IR, Pereira MM, Ocarino NM, Oliveira HP, Goes AM, Rezende CMF (2015) Effect of the ionic product of bioglass 60s on osteoblastic activity in canines. BMC Vet Res 11:234–247

    Google Scholar 

  59. Franceschi RT, Ge CX, Xiao GZ, Roca H, Jiang D (2009) Transcriptional regulation of osteoblasts. Cells Tissues Organs 189:144–152

    CAS  Google Scholar 

  60. Liu QH, Cen L, Yin S, Chen L, Liu GP, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials 29:4792–4799

    CAS  Google Scholar 

  61. Li HW, Sun JY (2011) Effects of dicalcium silicate coating ionic dissolution products on juman mesenchymal stem-cell proliferation and osteogenic differentiation. J Int Med Res 39:112–128

    Google Scholar 

  62. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855

    CAS  Google Scholar 

  63. Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L (2006) Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol 38:1171–1180

    CAS  Google Scholar 

  64. Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576

    CAS  Google Scholar 

  65. Valerio P, Pereira MM, Goes AM, Leite MF (2009) Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 4:045011

    CAS  Google Scholar 

  66. Choi MK, Kim MH, Kang MH (2005) The effect of boron supplementation on bone strength in ovariectomized rats fed with diets containing different calcium levels. Food Sci Biotechnol 14:242–248

    CAS  Google Scholar 

  67. Uysal T, Ustdal A, Sonmez MF, Ozturk F (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79:984–990

    Google Scholar 

  68. Chen C, Watkins-Curry P, Smoak M, Hogan K, Deese S, McCandless GT, Chan JY, Hayes DJ (2015) Targeting calcium magnesium silicates for polycaprolactone/ceramic composite scaffolds. Acs Biomater Sci Eng 1:94–102

    CAS  Google Scholar 

  69. Houreh AB, Labbaf S, Ting HK, Ejeian F, Jones JR, Esfahani MHN (2017) Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J Mater Sci 52:8928–8941

    CAS  Google Scholar 

  70. Allo BA, Lin SG, Mequanint K, Rizkalla AS (2013) Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. Acs Appl Mater Interfaces 5:7574–7583

    CAS  Google Scholar 

  71. Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater 21:130–143

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFC1103800), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (2018-KF-2), and the Fundamental Research Funds for the Central Universities (WUT: 2018III006CG, WUT: 195201028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Feng, J., Zhou, J. et al. Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride. J Mater Sci 55, 14501–14515 (2020). https://doi.org/10.1007/s10853-020-05015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05015-5

Navigation