Skip to main content

Advertisement

Log in

Multifunctional structural composite fibers in energy storage by extrusion-based manufacturing

  • Invited Feature Paper-Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Flexible electronics have become increasingly important with growing market demands. Fiber-shaped supercapacitors and batteries are promising options for developing commercial applications due to their high power density, energy density, and mechanical properties. The bottlenecks of developing fiber-shaped supercapacitors and batteries include the inherent high resistance of electrode materials, low-yield manufacturing processes, and robustness of the fiber-shaped devices. Numerous studies on electrode materials, fiber structures, and manufacturing processes promote the electrical conductivity, surface area, and flexibility for high-performance fiber-shaped energy storage devices by extrusion-based manufacturing. This review provides an overview of the state-of-the-art of fiber-shaped supercapacitors and batteries including the electrode materials, fiber structures, and the extrusion-based manufacturing processes and highlight the research trend in the emerging field. The novel designs and manufacturing methods for fiber-shaped supercapacitors and batteries are also discussed to broaden the perspective in the emerging field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Copyright 2016, Elsevier. (c), Ref [102]. Copyright 2016, Wiley–VCH.

Figure 5

Copyright 2017, Wiley–VCH. (e, f, g, h), Ref [8]. Copyright 2018, Wiley–VCH.

Figure 6

Copyright 2021, Elsevier. (f, g, h, i. j), Ref [110]. Copyright 2014, Nature Portfolio. (k, l, m, n, o), Ref [91]. Copyright 2020, Elsevier.

Figure 7

Copyright 2021, American Chemical Society. (b, c, d, e), Ref [110]. Copyright 2021, Wiley–VCH. (f, g, h, i, j), Ref [91]. Copyright 2018, Elsevier.

Figure 8

Copyright 2022, Elsevier. [110]. Copyright 2021, Wiley–VCH (b, c, d), Ref [119]. Copyright 2021, Elsevier.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. M. Tawalbeh, S.Z. Murtaza, A. Al-Othman et al., Renew. Energy 194, 955–977 (2022)

    Article  CAS  Google Scholar 

  2. D.P. Dubal, O. Ayyad, V. Ruiz et al., Chem. Soc. Rev. 44, 1777–1790 (2015)

    Article  CAS  Google Scholar 

  3. Y. Zhang, Y. Wang, L. Wang et al., J. Mater. Chem. A 4, 9002–9008 (2016)

    Article  CAS  Google Scholar 

  4. Z. Wang, J. Cheng, Q. Guan et al., Nano Energy 45, 210–219 (2018)

    Article  CAS  Google Scholar 

  5. M. Wang, S. Xie, C. Tang et al., Adv. Funct. Mater. 30, 1905971 (2020)

    Article  CAS  Google Scholar 

  6. D.M. Soares, Z. Ren, S.B. Mujib et al., Adv. Energy Sustain. Res. 2, 2000111 (2021)

    Article  CAS  Google Scholar 

  7. M.L. Hsiao, C.T. Lo, Int. J. Energy Res. 44, 8606–8621 (2020)

    Article  CAS  Google Scholar 

  8. J. Zhao, Y. Zhang, Y. Huang et al., Adv. Sci. 5, 1801114 (2018)

    Article  Google Scholar 

  9. Y. Zhou, C.H. Wang, W. Lu et al., Adv. Mater. 32, 1902779 (2020)

    Article  CAS  Google Scholar 

  10. S. Lee, J.G. Kim, H. Yu et al., Chem. Eng. J. 453, 139974 (2023)

    Article  CAS  Google Scholar 

  11. Y. Li, Y.B. Wang, H. Zhang et al., J. Cent. South Univ. 29, 2837–2856 (2022)

    Article  CAS  Google Scholar 

  12. X.Y. Luo, Y. Chen, Y. Mo, New Carbon Mater. 36, 49–68 (2021)

    Article  CAS  Google Scholar 

  13. S. Kumar, G. Saeed, L. Zhu et al., Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  14. M.A.A.M. Abdah, N.H.N. Azman, S. Kulandaivalu et al., Mater. Des 186, 108199 (2020)

    Article  Google Scholar 

  15. D. Nandi, V.B. Mohan, A.K. Bhowmick et al., J. Mater. Sci. 55, 6375–6400 (2020)

    Article  CAS  Google Scholar 

  16. L. Xie, C. Tang, Z. Bi et al., Adv. Energy Mater 11, 2101650 (2021)

    Article  CAS  Google Scholar 

  17. X. Lan, T. Tang, H. Xie et al., Nano Lett. 22, 5795–5802 (2022)

    Article  CAS  Google Scholar 

  18. Z. Lyu, G.J. Lim, J.J. Koh et al., Joule 5, 89–114 (2021)

    Article  CAS  Google Scholar 

  19. S. Praveen, G.S. Sim, C.W. Ho et al., Energy Storage Mater. 41, 748–757 (2021)

    Article  Google Scholar 

  20. X. Li, X. Chen, Z. Jin et al., Mater. Chem. Front. 5, 1140–1163 (2021)

    Article  CAS  Google Scholar 

  21. W. Yu, H. Zhou, B.Q. Li et al., ACS Appl. Mater. Interfaces 9, 4597–4604 (2017)

    Article  CAS  Google Scholar 

  22. Y.L. Tong, B. Xu, X.F. Du et al., Macromol. Mater. Eng. 303, 1700664 (2018)

    Article  Google Scholar 

  23. Y. Hu, H. Cheng, F. Zhao et al., Nanoscale 6, 6448–6451 (2014)

    Article  CAS  Google Scholar 

  24. Y. Meng, Y. Zhao, C. Hu et al., Adv. Mater. 25, 2326–2331 (2013)

    Article  CAS  Google Scholar 

  25. M. Liao, L. Ye, Y. Zhang et al., Adv. Electron. Mater 5, 1800456 (2019)

    Article  Google Scholar 

  26. Z. Tong, Y. Yuan, S. Yin et al., Mater. Lett. 311, 131587 (2022)

    Article  CAS  Google Scholar 

  27. W.Y. Jin, M.M. Ovhal, H.B. Lee et al., Adv. Energy Mater 11, 2003509 (2021)

    Article  CAS  Google Scholar 

  28. A. Fakharuddin, H. Li, F. Di Giacomo et al., Adv. Energy Mater 11, 2101443 (2021)

    Article  CAS  Google Scholar 

  29. R. Li, X. Shen, Z. Ji et al., Chem. Eng. J. 457, 141266 (2023)

    Article  CAS  Google Scholar 

  30. C. Liu, L. Le, M. Zhang et al., Adv. Eng. Mater. 24, 2101337 (2022)

    Article  CAS  Google Scholar 

  31. C. Liu, J. Ding, Procedia Manuf. 53, 450–455 (2021)

    Article  Google Scholar 

  32. Q. Wang, J. Yan, Z. Fan, Energy Environ. Sci. 9, 729–762 (2016)

    Article  CAS  Google Scholar 

  33. X. Jian, S. Liu, Y. Gao et al., J. Electr. Eng 4, 75–87 (2016)

    Google Scholar 

  34. C.M. Das, L. Kang, Q. Ouyang et al., InfoMat 2, 698–714 (2020)

    Article  CAS  Google Scholar 

  35. C. Niu, E.K. Sichel, R. Hoch et al., Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  CAS  Google Scholar 

  36. M. Deshmukh, B.C. Kang, J.Y. Jeon et al., ACS Appl. Nano Mater. 3, 8829–8839 (2020)

    Article  CAS  Google Scholar 

  37. L. Li, W. Liu, F. Yang et al., Compos. Sci. Technol. 187, 107946 (2020)

    Article  CAS  Google Scholar 

  38. H. Jeon, Y. Kim, W.R. Yu et al., Compos. B. Eng. 189, 107912 (2020)

    Article  CAS  Google Scholar 

  39. Z. Wang, Q.E. Zhang, S. Long et al., ACS Appl. Mater. Interfaces 10, 10437–10444 (2018)

    Article  CAS  Google Scholar 

  40. G.D. Goh, Y.L. Yap, H. Tan et al., Crit. Rev. Solid State Mater. Sci. 45, 113–133 (2020)

    Article  CAS  Google Scholar 

  41. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)

    Article  CAS  Google Scholar 

  42. D. Khokhar, S. Jadoun, R. Arif et al., Polym. Plast. Technol. Mater. 60, 465–487 (2021)

    Google Scholar 

  43. L.V. Kayser, D.J. Lipomi, Adv. Mater. 31, 1806133 (2019)

    Article  Google Scholar 

  44. G. Tarabella, D. Vurro, S. Lai et al., Flex. Print. Electron 5, 014005 (2020)

    Article  CAS  Google Scholar 

  45. H. Yuk, B. Lu, S. Lin et al., Nat. Commun. 11, 1–8 (2020)

    Article  Google Scholar 

  46. D. Yuan, B. Li, J. Cheng et al., J. Mater. Chem. A 4, 11616–11624 (2016)

    Article  CAS  Google Scholar 

  47. D. Yoo, J. Kim, J.H. Kim, Nano Res. 7, 717–730 (2014)

    Article  CAS  Google Scholar 

  48. M.Y. Teo, N. RaviChandran, N. Kim et al., ACS Appl. Mater. Interfaces 11, 37069–37076 (2019)

    Article  CAS  Google Scholar 

  49. Z. Qi, J. Ye, W. Chen et al., Adv. Mater. Technol. 3, 1800053 (2018)

    Article  Google Scholar 

  50. C. Sun, S. Liu, X. Shi et al., Chem. Eng. J. 381, 122641 (2020)

    Article  CAS  Google Scholar 

  51. H. Wei, X. Cauchy, I.O. Navas et al., ACS Appl. Mater. Interfaces 11, 24523–24532 (2019)

    Article  CAS  Google Scholar 

  52. X. Jian, S. Liu, Y. Gao et al., ACS Appl. Mater. Interfaces 9, 18872–18882 (2017)

    Article  CAS  Google Scholar 

  53. T. Brousse, M. Toupin, R. Dugas et al., J. Electrochem. Soc. 153, A2171 (2006)

    Article  CAS  Google Scholar 

  54. N.R. Chodankar, D.P. Dubal, G.S. Gund et al., Electrochim. Acta 165, 338–347 (2015)

    Article  CAS  Google Scholar 

  55. R.S. Kalubarme, H.S. Jadhav, C.-J. Park, Electrochim. Acta 87, 457–465 (2013)

    Article  CAS  Google Scholar 

  56. Q. Wang, X. Wang, J. Xu et al., Nano Energy 8, 44–51 (2014)

    Article  CAS  Google Scholar 

  57. J. Garcia-Torres, A.J. Roberts, R.C. Slade et al., Electrochim. Acta 296, 481–490 (2019)

    Article  CAS  Google Scholar 

  58. F. Mo, G. Liang, Z. Huang et al., Adv. Mater. 32, 1902151 (2020)

    Article  CAS  Google Scholar 

  59. J. Yang, J. Chen, Z. Wang et al., Adv. Energy Sustain. Res. 2, 2100060 (2021)

    Article  Google Scholar 

  60. Q. Guan, Y. Li, X. Bi et al., Adv. Energy Mater 9, 1901434 (2019)

    Article  CAS  Google Scholar 

  61. Y. Li, J. Fu, C. Zhong et al., Adv. Energy Mater 9, 1802605 (2019)

    Article  Google Scholar 

  62. K. Wang, X. Zhang, J. Han et al., ACS Appl. Mater. Interfaces 10, 24573–24582 (2018)

    Article  CAS  Google Scholar 

  63. M. Li, J. Meng, Q. Li et al., Adv. Funct. Mater. 28, 1802016 (2018)

    Article  Google Scholar 

  64. Y. Li, C. Zhong, J. Liu et al., Adv. Mater. 30, 1703657 (2018)

    Article  Google Scholar 

  65. R. Hongtong, P. Thanwisai, R. Yensano et al., J. Alloy. Compd. 804, 339–347 (2019)

    Article  CAS  Google Scholar 

  66. T. Gao, G. Yan, X. Yang et al., J. Energy Chem. 71, 192–200 (2022)

    Article  CAS  Google Scholar 

  67. Y. Wang, Y. Zheng, J. Zhao et al., J. Mater. Chem. A 8, 11155–11164 (2020)

    Article  CAS  Google Scholar 

  68. W.G. Chong, Y. Xiao, J.Q. Huang et al., Nanoscale 10, 21132–21141 (2018)

    Article  CAS  Google Scholar 

  69. L.C. Sanchez, C.A.G. Beatrice, C. Lotti et al., Int. J. Adv. Manuf. Technol. 105, 2403–2414 (2019)

    Article  Google Scholar 

  70. S. Park, W. Shou, L. Makatura et al., Matter 5, 43–76 (2022)

    Article  CAS  Google Scholar 

  71. M. Wei, K. Lin, L. Sun, Mater. Des. 216, 110570 (2022)

    Article  CAS  Google Scholar 

  72. D. Chimene, K.K. Lennox, R.R. Kaunas et al., Ann. Biomed. Eng. 44, 2090–2102 (2016)

    Article  Google Scholar 

  73. K. Pitt, O. Lopez-Botello, A.D. Lafferty et al., Compos Sci Technol 138, 32–39 (2017)

    Article  CAS  Google Scholar 

  74. J.P. Lewicki, J.N. Rodriguez, C. Zhu et al., Sci. Rep. 7, 1–14 (2017)

    Article  Google Scholar 

  75. B. Abu-Jdayil, D.A. Fara, Ital. J. Food Sci. 25, 196 (2013)

    CAS  Google Scholar 

  76. M. Ma, Z. Hu, K. Zhang et al., Addit. Manuf. 46, 102217 (2021)

    CAS  Google Scholar 

  77. I. Seoane-Viaño, P. Januskaite, C. Alvarez-Lorenzo et al., J Control Release 332, 367–389 (2021)

    Article  Google Scholar 

  78. J. Liu, H. Ma, Y. Yang et al., Adv. Mater. Sci. Eng. 2021, 1–10 (2021)

    Google Scholar 

  79. J.Z. Gul, M. Sajid, M.M. Rehman et al., Sci. Technol. Adv. Mater. 19, 243–262 (2018)

    Article  CAS  Google Scholar 

  80. Y. Gao, J. Ding, Adv. Mater. Technol. 8, 2200263 (2023)

    Article  CAS  Google Scholar 

  81. H. Liu, M.C. Leu, Int. J. Mod. Phys. B 23, 1861–1866 (2009)

    Article  CAS  Google Scholar 

  82. H. Ji, X. Zhang, X. Huang et al., SN Appl. Sci. 1, 1–11 (2019)

    CAS  Google Scholar 

  83. G. Kollamaram, D.M. Croker, G.M. Walker et al., Int. J. Pharm. 545, 144–152 (2018)

    Article  CAS  Google Scholar 

  84. A. Ji, S. Zhang, S. Bhagia et al., RSC Adv. 10, 21698–21723 (2020)

    Article  CAS  Google Scholar 

  85. P. Dudek, Arch. Metall. Mater. 58, 1415–1418 (2013)

    Article  CAS  Google Scholar 

  86. M.H. Ali, N. Mir-Nasiri, W.L. Ko, Int. J. Adv. Manuf. Technol. 86, 999–1010 (2016)

    Article  Google Scholar 

  87. L. Mogas-Soldevila, J. Duro-Royo, N. Oxman, 3D Print Addit. Manuf. 1, 141–151 (2014)

    Article  Google Scholar 

  88. S. Zhou, I. Usman, Y. Wang et al., Energy Storage Mater. 38, 141–156 (2021)

    Article  Google Scholar 

  89. P. Arora, Z. Zhang, Chem. Rev. 104, 4419–4462 (2004)

    Article  CAS  Google Scholar 

  90. X. Wang, Z. Pan, J. Yang et al., Energy Storage Mater. 22, 179–184 (2019)

    Article  Google Scholar 

  91. Z. Yang, Y. Jia, Y. Niu et al., J. Energy Chem. 51, 434–441 (2020)

    Article  Google Scholar 

  92. Y. Yu, X. Wang, C. Yang et al., Smart Mater. Med. 3, 1–3 (2022)

    Article  CAS  Google Scholar 

  93. Q. Wang, Y. Yang, W. Chen et al., J. Alloy. Compd. 935, 168110 (2023)

    Article  CAS  Google Scholar 

  94. Z. Yang, W. Zhao, Y. Niu et al., Carbon 132, 241–248 (2018)

    Article  CAS  Google Scholar 

  95. Y.H. Zhu, X.Y. Yang, T. Liu et al., Adv. Mater. 32, 1901961 (2020)

    Article  CAS  Google Scholar 

  96. Z. Wang, Y. Cao, J. Zhou et al., Energy Storage Mater. 47, 122 (2022)

    Article  CAS  Google Scholar 

  97. S. Duan, Y. Lin, C. Zhang et al., Nano Energy 91, 106650 (2022)

    Article  CAS  Google Scholar 

  98. Y. Xu, Y. Zhao, J. Ren et al., Angew. Chem. 128, 8111–8114 (2016)

    Article  Google Scholar 

  99. T. Khudiyev, B. Grena, G. Loke et al., Mater. Today 52, 80–89 (2022)

    Article  CAS  Google Scholar 

  100. Y. Liang, Z. Wang, J. Huang et al., J. Mater. Chem. A 3, 2547–2551 (2015)

    Article  CAS  Google Scholar 

  101. J. Li, X. Huang, L. Cui et al., Prog. Nat. Sci. 26, 212–220 (2016)

    Article  CAS  Google Scholar 

  102. D. Yu, K. Goh, Q. Zhang et al., Adv. Mater. 26, 6790–6797 (2014)

    Article  CAS  Google Scholar 

  103. H. Jin, L. Zhou, C.L. Mak et al., J. Mater. Chem. A 3, 15633–15641 (2015)

    Article  CAS  Google Scholar 

  104. I. Nam, S. Park, G.P. Kim et al., Chem. Sci. 4, 1663–1667 (2013)

    Article  CAS  Google Scholar 

  105. Y. Hong, X.L. Cheng, G. Liu et al., Chin. J. Polym. Sci. 37, 737–743 (2019)

    Article  CAS  Google Scholar 

  106. Y. Wang, C. Chen, H. Xie et al., Adv. Funct. Mater. 27, 1703140 (2017)

    Article  Google Scholar 

  107. Z. Yuan, H.J. Peng, J.Q. Huang et al., Adv. Funct. Mater. 24, 6105–6112 (2014)

    Article  CAS  Google Scholar 

  108. P. Xie, W. Yuan, X. Liu et al., Energy Storage Mater. 36, 56–76 (2021)

    Article  Google Scholar 

  109. D. Liu, P. Du, W. Wei et al., J. Colloid Interface Sci. 513, 295–303 (2018)

    Article  CAS  Google Scholar 

  110. Y. Gao, J. Ding, J. Mater. Res. 36, 4527–4535 (2021)

    Article  CAS  Google Scholar 

  111. L. Kou, T. Huang, B. Zheng et al., Nat. Commun. 5, 1–10 (2014)

    Article  Google Scholar 

  112. X. Xiang, Z. Yang, J. Di et al., Nanoscale 9, 11523–11529 (2017)

    Article  CAS  Google Scholar 

  113. Z. Yang, J. Deng, X. Chen et al., Angew. Chem. 125, 13695–13699 (2013)

    Article  Google Scholar 

  114. W. He, X. Fu, P. Bai et al., Nano Lett. 21, 9164–9171 (2021)

    Article  CAS  Google Scholar 

  115. H. Ragones, A. Vinegrad, G. Ardel et al., J. Electrochem. Soc. 167, 070503 (2019)

    Article  Google Scholar 

  116. D. Ji, H. Zheng, H. Zhang et al., Chem. Eng. J. 433, 133815 (2022)

    Article  CAS  Google Scholar 

  117. J. Zhao, H. Lu, Y. Zhang et al., Sci. Adv. 7, eabd6978 (2021)

    Article  CAS  Google Scholar 

  118. A.J. Blake, R.R. Kohlmeyer, J.O. Hardin et al., Adv. Energy Mater 7, 1602920 (2017)

    Article  Google Scholar 

  119. H. Zhang, W. Wu, H. Ma et al., Colloids Surf. A: Physicochem. Eng. Asp. 615, 126193 (2021)

    Article  CAS  Google Scholar 

  120. W. Ma, W. Li, M. Li et al., Adv. Funct. Mater. 31, 2100195 (2021)

    Article  CAS  Google Scholar 

  121. C. He, J. Cheng, Y. Liu et al., Energy Mater 1, 100010 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by New York State College of Ceramics at Alfred University. The authors greatly acknowledge the U.S. Army for funding under contract number W911NF-22-2-0061. The authors acknowledge Mr. Anthony F Brandl for writing suggestions.

Funding

Faculty Start-up Fund in New York State College of Ceramics at Alfred University. U.S. Army Contract: W911NF-22–2-0061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Ding.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ding, J. Multifunctional structural composite fibers in energy storage by extrusion-based manufacturing. Journal of Materials Research 38, 2615–2630 (2023). https://doi.org/10.1557/s43578-023-01014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01014-9

Keywords

Navigation