Skip to main content
Log in

Improving the electrochromic performance of prussian blue (PB) thin films by using an innovative electrothermophoresis method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An innovative method called electrothermophoresis (ETP), which involves the use of a temperature gradient and a pulsed potential, was investigated for the Prussian blue (PB) thin films. The SEM images showed that the use of the temperature gradient caused the grains to be smaller. By changing of the deposition frequency from Hz to kHz in the pulsed potential mode, the transmittance change of colored and bleached states (ΔT), contrast ratio (CR), and optical density (ΔOD) decrease. Using the innovative method (reverse temperature gradient) causes to increase the contrast ratio and optical density. By using pulsed electric field, the coloration efficiency (CE), reduces nevertheless increases again with the addition of the temperature gradient. Also, the insertion and extraction charge ratio (Qin/Qex) is almost close to the unity in the case of applying an inverse temperature gradient, which indicates a good reversibility of the sample to the oxidation and reduction processes.

Graphical Abstract

Preparation steps of Prussian blue thin films based on electrothermophoresis technique

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.M. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromic Materials and Devices, 1st edn. (Wiley-VCH, Weinheim, 2015), pp. 3–9

  2. Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang, S.Y. Guo, Electrochim. Acta 56, 1208 (2011). https://doi.org/10.1016/j.electacta.2010.10.097

    Article  CAS  Google Scholar 

  3. L.M.N. Assis, R.C. Sabadini, L.P. Santos, J. Kanicki, M. Łapkowski, A. Pawlicka, Electrochim. Acta 182, 878 (2015). https://doi.org/10.1016/j.electacta.2015.09.133

    Article  CAS  Google Scholar 

  4. A.A. Argun, P. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, J.R. Reynolds, Chem. Mater 16, 4401 (2004). https://doi.org/10.1021/cm049669l

    Article  CAS  Google Scholar 

  5. D.M. Delongchamp, P.T. Hammond, Chem. Mater 16, 4799 (2004). https://doi.org/10.1021/cm0496624

    Article  CAS  Google Scholar 

  6. Y.T. Park, S.H. Lee, K.T. Lee, Ceram. Int 46, 29052 (2020). https://doi.org/10.1016/j.ceramint.2020.08.076

    Article  CAS  Google Scholar 

  7. G. Beydaghyan, M. Boudreau, P.V. Ashrit, J. Mater. Res 26, 55 (2011). https://doi.org/10.1557/jmr.2010.43

    Article  CAS  Google Scholar 

  8. M. Obaida, A.M. Fathi, I. Moussa, H.H. Afify, J. Mater. Res 37, 2282 (2022). https://doi.org/10.1557/s43578-022-00627-w

    Article  CAS  Google Scholar 

  9. L.M.N. Assis, R. Leones, J. Kanicki, A. Pawlicka, M.M. Silva, J. Electroanal. Chem 777, 33 (2016). https://doi.org/10.1016/j.jelechem.2016.05.007

    Article  CAS  Google Scholar 

  10. Y. Jiang, Z. Chen, B. Xin, Y. Liu, L. Lin, J. Mater. Res 34, 1302 (2019). https://doi.org/10.1557/jmr.2019.110

    Article  CAS  Google Scholar 

  11. T.S. Tung, K.C. Ho, Sol. Energy Mater. Sol. Cells 90, 521 (2006). https://doi.org/10.1016/j.solmat.2005.02.018

    Article  CAS  Google Scholar 

  12. T. Basova, A. Gürek, V. Ahsen, A. Ray, Opt. Mater. 35, 634 (2013). https://doi.org/10.1016/j.optmat.2012.10.017

    Article  CAS  Google Scholar 

  13. M. Zhua, J. Zeng, H. Li, X. Zhang, P. Liu, Electrochim. Acta 52, 6554 (2007). https://doi.org/10.1016/j.synthmet.2020.116579

    Article  CAS  Google Scholar 

  14. K.K. Purushothaman, G. Muralidharan, S. Vijayakumar, Mater. Lett. 296, 129881 (2021). https://doi.org/10.1016/j.matlet.2021.129881

    Article  CAS  Google Scholar 

  15. G.T. Phan, D.V. Pham, R.A. Patil, C.H. Tsai, C.C. Lai, W.C. Yeh, Y. Liou, Y.R. Ma, Sol. Energy Mater. Sol. Cells. 231, 111306 (2021). https://doi.org/10.1016/j.solmat.2021.111306

    Article  CAS  Google Scholar 

  16. P.R. Somani, S. Radhakrishnan, Mater. Chem. Phys 77, 117 (2002). https://doi.org/10.1016/S0254-0584(01)00575-2

    Article  Google Scholar 

  17. M.H. Chung, B.R. Park, E.J. Choi, Y.J. Choi, C. Lee, J. Hong, H.U. Cho, J.H. Cho, J.W. Moon, Sol. Energy Mater. Sol. Cells 217, 11068 (2020). https://doi.org/10.1016/j.solmat.2020.110683

    Article  CAS  Google Scholar 

  18. L.M. Huang, C.W. Hu, H.C. Liu, C.Y. Hsu, C.H. Chen, K.C. Ho, Sol. Energy Mater. Sol. Cells 99, 154 (2012). https://doi.org/10.1016/j.solmat.2011.03.036

    Article  CAS  Google Scholar 

  19. A. Kolay, D. Maity, H. Flint, E.A. Gibson, M. Deep, Sol. Energy Mater. Sol. Cells 239, 11674 (2022). https://doi.org/10.1016/j.solmat.2022.111674

    Article  CAS  Google Scholar 

  20. L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia, S. Bodoardo, G. Leftheriotis, F. Bella, J. Mater. Chem. A 9, 19687 (2021). https://doi.org/10.1039/D1TA03544D

    Article  CAS  Google Scholar 

  21. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays. Nature 383, 608 (1996). https://doi.org/10.1038/383608a0

    Article  CAS  Google Scholar 

  22. Y. Guari, J. Larionova, Prussian blue-type nanoparticles and nanocomposites, 1st edn. (Jenny Stanford Publishing, Boca Raton, 2019)

    Book  Google Scholar 

  23. V.D. Neff, J. Electrochem. Soc 125, 886 (1978). https://doi.org/10.1149/1.2131575

    Article  CAS  Google Scholar 

  24. F. Ricci, G. Palleschi, Biosens. Bioelectron 21, 389 (2005). https://doi.org/10.1016/j.bios.2004.12.001

    Article  CAS  Google Scholar 

  25. Y. Yue, H. Li, K. Li, J. Wang, H. Wang, Q. Zhangc, Y. Lic, P. Chenc, J. Phys. Chem. Solids 110, 284 (2017). https://doi.org/10.1016/j.jpcs.2017.06.022

    Article  CAS  Google Scholar 

  26. M.S. Fan, S.Y. Kao, T.H. Chang, R. Vittal, K.C. Ho, Sol. Energy Mater. Sol. Cells 145, 35 (2016). https://doi.org/10.1016/j.solmat.2015.06.031

    Article  CAS  Google Scholar 

  27. K.C. Cheng, J.J. Kai, F.R. Chen, Electrochim. Acta 52, 6554 (2007). https://doi.org/10.1016/j.electacta.2007.04.093

    Article  CAS  Google Scholar 

  28. J. Zhang, W. Wu, C. Zhang, Z. Ren, X. Qian, Appl. Surf. Sci 484, 1111 (2019). https://doi.org/10.1016/j.apsusc.2019.04.174

    Article  CAS  Google Scholar 

  29. H. Kahlert, S. Komorsky-Lovric, M. Hermes, F. Scholz, J. Anal. Chem 356, 204 (1996). https://doi.org/10.1007/s0021663560204

    Article  CAS  Google Scholar 

  30. W. Jin, A. Toutianoush, M. Pyrasch, J. Schnepf, H. Gottschalk, W. Rammensee, B. Tieke, J. Phys. Chem. B 107, 12062 (2003). https://doi.org/10.1021/jp034947+

    Article  CAS  Google Scholar 

  31. G. Vaivars, J. Pitkevics, A. Lusis, B: Chem. 13, 111 (1993). https://doi.org/10.1016/0925-4005(93)85337-A

    Article  CAS  Google Scholar 

  32. T. Fu, Anal. Bioanal. Chem. 401, 1167 (2011). https://doi.org/10.1007/s00216-011-5143-8

    Article  CAS  Google Scholar 

  33. R. Konchi, O.S. Wolfbeis, Anal. Chem 70, 2544 (1998). https://doi.org/10.1021/ac9712714

    Article  Google Scholar 

  34. Y. Song, M. Zhang, L. Wang, L. Wan, X.S. XiaoYe, J. Wang, Electrochim. Acta. 56, 7267 (2011). https://doi.org/10.1016/j.electacta.2011.06.054

    Article  CAS  Google Scholar 

  35. P. Ding, G. Song, J. Zhou, Q. Song, Dyes Pigments 120, 169 (2015). https://doi.org/10.1016/j.dyepig.2015.04.019

    Article  CAS  Google Scholar 

  36. J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie, X.W. Lou, X.W. Sun, Nat. Commun. 5, 4921 (2014). https://doi.org/10.1038/ncomms5921

    Article  CAS  Google Scholar 

  37. H.A. Hoffman, L. Chakrabarti, M.F. Dumont, A.D. Sandlerabcd, R. Fernandes, Nat. Commun. 4, 29729 (2014). https://doi.org/10.1039/C4RA05209A

    Article  CAS  Google Scholar 

  38. P. Najafisayar, M.E. Bahrololoom, Thin Solid Films 542, 45 (2013). https://doi.org/10.1016/j.tsf.2013.06.029

    Article  CAS  Google Scholar 

  39. V.B. Isfahani, N. Memarian, H.G. Dizaji, A. Arab, M.M. Silva, Electrochim. Acta 304, 282 (2019). https://doi.org/10.1016/j.electacta.2019.02.120

    Article  CAS  Google Scholar 

  40. C.L. Lin, L.C. Liao, Surf. Coat. Technol 259, 330 (2014). https://doi.org/10.1016/j.surfcoat.2014.02.058

    Article  CAS  Google Scholar 

  41. J. Chu, X. Li, Y. Cheng, S. Xiong, Mater. Lett. 258, 126782 (2020). https://doi.org/10.1016/j.matlet.2019.126782

    Article  CAS  Google Scholar 

  42. S.E. Hadian, D.R. Gabe, Surf. Coat. Technol. 122, 118 (1999). https://doi.org/10.1016/S0257-8972(99)00328-X

    Article  CAS  Google Scholar 

  43. D. Choi, M. Son, T. Im, S.H. Ahn, C.S. Lee, Ceram. Int. 46, 21008 (2020). https://doi.org/10.1016/j.ceramint.2020.05.166

    Article  CAS  Google Scholar 

  44. M.H. Elshorbagy, R. Ramadan, K. Abdelhady, Optik 129, 130 (2017). https://doi.org/10.1016/j.ijleo.2016.10.057

    Article  CAS  Google Scholar 

  45. S.A. Agnihotry, P. Singh, A.G. Joshi, D.P. Singh, K.N. Sood, S.M. Shivaprasad, Electrochim. Acta. 51, 4291 (2006). https://doi.org/10.1016/j.electacta.2005.12.008

    Article  CAS  Google Scholar 

  46. A.C. Sonavane, A.I. Inamdar, P.S. Shinde, H.P. Deshmukh, R.S. Patil, P.S. Patil, J. Alloys Compd 489, 667 (2010). https://doi.org/10.1016/j.jallcom.2009.09.146

    Article  CAS  Google Scholar 

  47. V.B. Isfahani, H.R. Dizaji, N. Memarian, A. Arab, Mater. Res. Express. 6, 096449 (2019). https://doi.org/10.1088/2053-1591/ab0989

    Article  CAS  Google Scholar 

  48. D. Pletcher, F.C. Walsh, Industrial Electrochemistry (Springer Science+Business Media, Netherlands, 1984)

    Book  Google Scholar 

  49. J.O. Bockris, B.E. Conway, R.E. White, Modern aspects of electrochemistry (Springer, New York, 1992)

    Google Scholar 

  50. A. Sharma, S. Bhattacharya, S. Das, K. Das, Metall. Mater. Trans. A 45, 4610 (2014). https://doi.org/10.1007/s11661-014-2389-8

    Article  CAS  Google Scholar 

  51. H. Liu, H. Wang, W. Ying, W. Liu, Y. Wang, Q. Li, Int. J. Electrochem. Sci. 15, 10550 (2020). https://doi.org/10.20964/2020.10.33

    Article  CAS  Google Scholar 

  52. A. Taqieddin, M.R. Allshouse, A.N. Alshawabkeh, J. Electrochem. Soc. 165(13), 694 (2018). https://doi.org/10.1149/2.0791813jes

    Article  CAS  Google Scholar 

  53. Y. Yao, M. Zhao, C. Zhao, X. Wang, J. Electrochem. Soc. 160, 553 (2013). https://doi.org/10.1149/2.098311jes

    Article  CAS  Google Scholar 

  54. N.D. Nikolic, K.I. Popov, Electrochemical production of metal powders, modern aspects of electrochemistry (Springer Science+Business Media, New York, 2012)

    Google Scholar 

  55. D.R. Gabe, J. Appl. Electrochem. 7, 908 (1997). https://doi.org/10.1023/A:1018497401365

    Article  Google Scholar 

  56. I. Mizushima, P.T. Tang, H.N. Hansen, M.A.J. Somers, Electrochim. Acta 51(27), 6128 (2006). https://doi.org/10.1016/j.electacta.2005.11.053

    Article  CAS  Google Scholar 

  57. J.H. Ouyang, X.S. Liang, J. Wen, Z.G. Liu, Z.L. Yang, Wear 271, 2037 (2011). https://doi.org/10.1016/j.wear.2010.12.035

    Article  CAS  Google Scholar 

  58. R.C. Alkire, D.M. Kolb (eds.), Advances in electrochemical science and engineering, 7th edn. (Verlag, Wiley, 2001)

    Google Scholar 

  59. S.R. Barbato, J.F. Ponce, M.L. Jara, J.S. Cuevas, R.A. Egana, J. Chil. Chem. Soc. 53(1), 1429 (2008). https://doi.org/10.4067/S0717-97072008000100022

    Article  Google Scholar 

  60. S. Demiri, M. Najdoski, J. Velevska, Mater. Res. Bull 46, 2484 (2011). https://doi.org/10.1016/j.materresbull.2011.08.02

    Article  CAS  Google Scholar 

  61. K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, (Wiley-Interscience Publication (John Wiley & Sons, New York, 1978)

    Google Scholar 

  62. A.M. Farah, C. Billing, C.W. Dikio, A.N. Dibofori-Orji, O.O. Oyedeji, D. Wankasi, F.M. Mtunzil, E.D. Dikio, Electrochem. Soc. 160, 553 (2013). https://doi.org/10.1149/2.098311jes

    Article  CAS  Google Scholar 

  63. Y. Zong, Y. Zhang, X. Lin, D. Ye, X. Luo, J. Wang, J. Radioanal. Nucl. Chem. 311, 1577 (2017). https://doi.org/10.1007/s10967-016-5111-z

    Article  CAS  Google Scholar 

  64. Y. Huang, M. Xie, J. Zhang, Z. Wang, Y. Jiang, G. Xiao, S. Li, L. Li, F. Wu, R. Chen, Nano Energy 39, 273 (2017). https://doi.org/10.1016/j.nanoen.2017.07.005

    Article  CAS  Google Scholar 

  65. R.E. Wilde, S. Nath Ghosh, B.J. Marshall, Inorg. Chem. 9(11), 2512 (1970). https://doi.org/10.1021/ic50093a027

    Article  CAS  Google Scholar 

  66. F. Chharganeh kalangestani, M. Simiari, F.E. Ghodsi, Eur. Phys. J. Plus. 136, 517 (2021). https://doi.org/10.1140/epjp/s13360-021-01513-w

    Article  CAS  Google Scholar 

  67. K. Lee, A.Y. Kim, J.K. Lee, Sol. Energy Mater. Sol. Cells. 135, 44 (2015). https://doi.org/10.1016/j.solmat.2015.03.006

    Article  CAS  Google Scholar 

  68. P. Yang, P. Sun, W. Mai, Mater. Today 19, 394 (2016). https://doi.org/10.1016/j.mattod.2015.11.007

    Article  CAS  Google Scholar 

  69. K.C. Cheng, F.R. Chen, J.J. Kai, Electrochim. Acta. 52, 3330 (2007). https://doi.org/10.1016/j.electacta.2006.10.012

    Article  CAS  Google Scholar 

  70. A.Y. Kim, J.H. Park, D. Byun, J.K. Lee, Thin Solid Films 546, 58 (2013). https://doi.org/10.1016/j.tsf.2013.05.030

    Article  CAS  Google Scholar 

  71. L.M.N. Assis, J.R. Andrade, L.H.E. Santos, A.J. Motheo, B. Hajduk, M. Łapkowski, A. Pawlicka, Electrochim. Acta 175, 176 (2015). https://doi.org/10.1016/j.electacta.2015.01.178

    Article  CAS  Google Scholar 

  72. Z.T. Li, Y.H. Tang, K.L. Zhou, H. Wang, H. Yan, Mater. (Basel) (2018). https://doi.org/10.3390/ma12010028

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge University of Guilan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Ghodsi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 819 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhavat, M.S., Ghodsi, F.E. Improving the electrochromic performance of prussian blue (PB) thin films by using an innovative electrothermophoresis method. Journal of Materials Research 38, 2852–2862 (2023). https://doi.org/10.1557/s43578-023-01005-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01005-w

Keywords

Navigation