Skip to main content

Advertisement

Log in

MXenes: Advances in the synthesis and application in supercapacitors and batteries

  • Review
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

MXenes, the newest family member of the two-dimensional materials have been widely investigated for different applications, particularly in the energy storage realm. With regard to this, MXene precursors have attained widespread attention for the application in electrochemical energy storage devices especially supercapacitors and batteries. This review has comprehensively studied various synthesis strategies adopted for MXenes including the top-down and bottom-up approaches. The shift to renewable energy alternatives have focused on the electrochemical choices such as supercapacitors and batteries, the most common and relevant ones. Thus the application of MXenes and its composite in supercapacitors as electrodes have been analyzed along with its detailed mechanism and electrochemical performance. Several battery chemistries including lithium-ion, sodium-ion and other battery systems utilizing MXenes have also been discussed here. Thus the existing strategies, advancements, and drawbacks regarding the inclusivity of MXenes in the electrochemical energy systems of supercapacitors and batteries are reviewed in this article.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Copyright © 2015, Nature Publishing Group.

Figure 4

Copyright © 2017, American Chemical Society.

Figure 5

Copyright © 2017, American Chemical Society. (b) Advantages of MXene for the application in SCs (c) Factors affecting performance of MXene.

Figure 6

Copyright © 2019, The Royal Society of Chemistry. (b) Suitable properties of 2D MXenes for application in Supercapacitors Reproduced from Ref. [89]. Copyright © 2020 Wiley‐VCH GmbH. (c) Types of SCs based on involved mechanisms. (d) Charge–discharge mechanism of EDLC Reproduced from Ref. [88]. Copyright © 2019, The Royal Society of Chemistry.

Figure 7

Copyright © 2020, The Royal Society of Chemistry.

Figure 8

Copyright © 2016, John Wiley and Sons. (c) Compared Capacitance of both Ti3C2Tx and Ti3C2Tx/SCNT composites at various scan rates. Reproduced from Ref. [99]. Copyright © 2017, Elsevier. (d) Durability of Ti3C2Tx/MnO2 composite. Reproduced from Ref. [100]. Copyright © 2016, Elsevier. (e) Rate performance of the Ti3C2Tx and Ti3C2Tx /PPY composite. Reproduced from Ref. [71]. Copyright © 2015, John Wiley and Sons. (f) Cycling performance of the Ti3C2Tx /PPY-based SCs at 0.5 mA cm−2 (inset shows the capacitance of Ti3C2Tx /PPY-based SCs with different bending) Reproduced from Ref. [101]. Copyright © 2016, John Wiley and Sons.

Figure 9

Copyright © 2020, American Chemical Society.

Figure 10

Copyright © 2019, John Wiley and Sons.

Figure 11

Copyright © 2018, The Royal Society of Chemistry. (b) Hollow MXene/C nanofibers. Reproduced from Ref. [118]. Copyright © 2021, John Wiley and Sons.

Figure 12

Copyright © 2021, American Chemical Society. (b) Na+ intercalation mechanisms in MXene nanosheets. Reproduced from Ref. [147]. Copyright © 2016, American Chemical Society. (c) VO2/MXene hybrid with 3D flower-like architecture: Synthetic process. Reproduced from Ref. [133]. Copyright © 2019, The Royal Society of Chemistry.

Figure 13

Copyright © 2016, American Chemical Society. (b) Cycling performance at 1 A g–1 for 2000 cycles for Nb2CTx@MoS2@C hybrid Reproduced from Ref. [134]. Copyright © 2021, American Chemical Society. (c) and (d) Rate performance and capacity in different current densities of VO2/MX-1, VO2/MX-2 and VO2/MX-3 electrodes, respectively. Reproduced from Ref. [133]. Copyright © 2019, The Royal Society of Chemistry.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1016/j.medcli.2015.04.005

    Article  CAS  Google Scholar 

  2. H. Li, X. Jia, Q. Zhang, X. Wang, Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 4, 1510–1537 (2018). https://doi.org/10.1016/j.chempr.2018.03.012

    Article  CAS  Google Scholar 

  3. A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem Soc Rev 43, 934–959 (2014). https://doi.org/10.1039/c3cs60260e

    Article  CAS  Google Scholar 

  4. A. Carvalho, M. Wang, X. Zhu et al., Phosphorene: from theory to applications. Nat Rev Mater 1, 1–16 (2016). https://doi.org/10.1038/natrevmats.2016.61

    Article  CAS  Google Scholar 

  5. P. Vogt, P. De Padova, C. Quaresima et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.108.155501

    Article  CAS  Google Scholar 

  6. K.J. Koski, Y. Cui, The new skinny in two-dimensional nanomaterials. ACS Nano 7, 3739–3743 (2013). https://doi.org/10.1021/nn4022422

    Article  CAS  Google Scholar 

  7. A. Molle, J. Goldberger, M. Houssa et al., Buckled two-dimensional Xene sheets. Nat Mater 16, 163–169 (2017). https://doi.org/10.1038/nmat4802

    Article  CAS  Google Scholar 

  8. P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem Soc Rev 43, 6537–6554 (2014). https://doi.org/10.1039/c4cs00102h

    Article  CAS  Google Scholar 

  9. M. Naguib, M. Kurtoglu, V. Presser et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  10. Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  Google Scholar 

  11. M.W. Barsoum, The Mn+1AXn phases: a new class of solids. Prog Solid State Chem 28, 201–281 (2000). https://doi.org/10.1016/s0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  12. Z. Sun, D. Music, R. Ahuja et al., Bonding and classification of nanolayered ternary carbides. Phys Rev B Condens Matter Mater Phys 70, 1–3 (2004). https://doi.org/10.1103/PhysRevB.70.092102

    Article  CAS  Google Scholar 

  13. M. Naguib, O. Mashtalir, J. Carle et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  14. M. Seredych, C.E. Shuck, D. Pinto et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem Mater 31, 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397

    Article  CAS  Google Scholar 

  15. B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv Mater 2007973, 1–15 (2021). https://doi.org/10.1002/adma.202007973

    Article  CAS  Google Scholar 

  16. B. Fu, J. Sun, C. Wang et al., MXenes: synthesis, optical properties, and applications in ultrafast photonics. Small 17, 1–23 (2021). https://doi.org/10.1002/smll.202006054

    Article  CAS  Google Scholar 

  17. A. Szuplewska, D. Kulpińska, A. Dybko et al., Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol 38, 264–279 (2020). https://doi.org/10.1016/j.tibtech.2019.09.001

    Article  CAS  Google Scholar 

  18. H. Kim, Z. Wang, H.N. Alshareef, MXetronics: electronic and photonic applications of MXenes. Nano Energy 60, 179–197 (2019). https://doi.org/10.1016/j.nanoen.2019.03.020

    Article  CAS  Google Scholar 

  19. F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421

    Article  CAS  Google Scholar 

  20. Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161

    Article  CAS  Google Scholar 

  21. S. Iravani, R.S. Varma, MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater Sci Eng 7, 1900–1913 (2021). https://doi.org/10.1021/acsbiomaterials.0c01763

    Article  CAS  Google Scholar 

  22. Z. Wu, T. Shang, Y. Deng et al., The assembly of MXenes from 2D to 3D. Adv Sci 7, 1903077 (2020). https://doi.org/10.1002/advs.201903077

    Article  CAS  Google Scholar 

  23. F. Bu, M.M. Zagho, Y. Ibrahim et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803

    Article  CAS  Google Scholar 

  24. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  25. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J Power Sources 157, 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  26. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis et al., Liquid exfoliation of layered materials. Science 340, 72–75 (2013). https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  27. D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1–29 (2018). https://doi.org/10.1002/smll.201703419

    Article  CAS  Google Scholar 

  28. Y. Xiao, J.Y. Hwang, Y.K. Sun, Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. J Mater Chem A 4, 10379–10393 (2016). https://doi.org/10.1039/c6ta03832h

    Article  CAS  Google Scholar 

  29. Y. Sun, S. Gao, Y. Xie, Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem Soc Rev 43, 530–546 (2014). https://doi.org/10.1039/c3cs60231a

    Article  CAS  Google Scholar 

  30. O. Mashtalir, M. Naguib, B. Dyatkin et al., Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater Chem Phys 139, 147–152 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.008

    Article  CAS  Google Scholar 

  31. M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao et al., Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2015). https://doi.org/10.1038/nature13970

    Article  CAS  Google Scholar 

  32. X. Zhao, A. Vashisth, E. Prehn et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1, 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020

    Article  Google Scholar 

  33. F. Liu, J. Zhou, S. Wang et al., Preparation of high-purity V2C MXene and electrochemical properties as Li-Ion batteries. J Electrochem Soc 164, A709–A713 (2017). https://doi.org/10.1149/2.0641704jes

    Article  CAS  Google Scholar 

  34. B. Soundiraraju, B.K. George, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017). https://doi.org/10.1021/acsnano.7b03129

    Article  CAS  Google Scholar 

  35. L.H. Karlsson, J. Birch, J. Halim et al., Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett 15, 4955–4960 (2015). https://doi.org/10.1021/acs.nanolett.5b00737

    Article  CAS  Google Scholar 

  36. J. Halim, M.R. Lukatskaya, K.M. Cook et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a

    Article  CAS  Google Scholar 

  37. T. Li, L. Yao, Q. Liu et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via Alkali treatment. Angew Chemie - Int Ed 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887

    Article  CAS  Google Scholar 

  38. C. Peng, P. Wei, X. Chen et al., A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram Int 44, 18886–18893 (2018). https://doi.org/10.1016/j.ceramint.2018.07.124

    Article  CAS  Google Scholar 

  39. W. Sun, S.A. Shah, Y. Chen et al., Electrochemical etching of Ti2AlC to Ti2CTX (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A 5, 21663–21668 (2017). https://doi.org/10.1039/c7ta05574a

    Article  CAS  Google Scholar 

  40. S. Yang, P. Zhang, F. Wang et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chemie Int Ed 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662

    Article  CAS  Google Scholar 

  41. S.Y. Pang, Y.T. Wong, S. Yuan et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc 141, 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578

    Article  CAS  Google Scholar 

  42. P. Urbankowski, B. Anasori, T. Makaryan et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016). https://doi.org/10.1039/c6nr02253g

    Article  CAS  Google Scholar 

  43. M. Li, J. Lu, K. Luo et al., Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574

    Article  CAS  Google Scholar 

  44. L. Gao, W. Bao, A.V. Kuklin et al., Hetero-MXenes: theory, synthesis, and emerging applications. Adv Mater 33, 2004129 (2021). https://doi.org/10.1002/adma.202004129

    Article  CAS  Google Scholar 

  45. S.K. Nemani, B. Zhang, B.C. Wyatt et al., High-entropy 2D carbide MXenes: TiVNbMo3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775

    Article  CAS  Google Scholar 

  46. R. Syamsai, J.R. Rodriguez, V.G. Pol et al., Double transition metal MXene (TixTa4−xC3) 2D materials as anodes for Li-ion batteries. Sci Rep 11, 1–13 (2021). https://doi.org/10.1038/s41598-020-79991-8

    Article  CAS  Google Scholar 

  47. M. Han, K. Maleski, C.E. Shuck et al., Tailoring electronic and optical properties of MXenes through forming solid solutions. J Am Chem Soc 142, 19110–19118 (2020). https://doi.org/10.1021/jacs.0c07395

    Article  CAS  Google Scholar 

  48. R. Meshkian, L.Å. Näslund, J. Halim et al., Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr Mater 108, 147–150 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.003

    Article  CAS  Google Scholar 

  49. J. Halim, S. Kota, M.R. Lukatskaya et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater 26, 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328

    Article  CAS  Google Scholar 

  50. J. Zhou, X. Zha, F.Y. Chen et al., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chemie Int Ed 55, 5008–5013 (2016). https://doi.org/10.1002/anie.201510432

    Article  CAS  Google Scholar 

  51. M. Alhabeb, K. Maleski, T.S. Mathis et al., Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew Chemie Int Ed 57, 5444–5448 (2018). https://doi.org/10.1002/anie.201802232

    Article  CAS  Google Scholar 

  52. Y. Gogotsi, Chemical vapour deposition: transition metal carbides go 2D. Nat Mater 14, 1079–1080 (2015). https://doi.org/10.1038/nmat4386

    Article  CAS  Google Scholar 

  53. D. Geng, X. Zhao, Z. Chen et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072

    Article  CAS  Google Scholar 

  54. F. Zhang, Z. Zhang, H. Wang et al., Plasma-enhanced pulsed-laser deposition of single-crystalline Mo2C ultrathin superconducting films. Phys Rev Mater 1, 1–8 (2017). https://doi.org/10.1103/PhysRevMaterials.1.034002

    Article  Google Scholar 

  55. Z. Zhang, F. Zhang, H. Wang et al., Substrate orientation-induced epitaxial growth of face centered cubic Mo2C superconductive thin film. J Mater Chem C 5, 10822–10827 (2017). https://doi.org/10.1039/c7tc03652c

    Article  CAS  Google Scholar 

  56. X. Xiao, H. Yu, H. Jin et al., Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180–2186 (2017). https://doi.org/10.1021/acsnano.6b08534

    Article  CAS  Google Scholar 

  57. C. Xu, L. Wang, Z. Liu et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374

    Article  CAS  Google Scholar 

  58. Z. Wang, V. Kochat, P. Pandey et al., Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv Mater 29, 1–9 (2017). https://doi.org/10.1002/adma.201700364

    Article  CAS  Google Scholar 

  59. Y. Qi, C. Meng, X. Xu et al., Unique transformation from graphene to carbide on Re(0001) induced by strong carbon-metal interaction. J Am Chem Soc 139, 17574–17581 (2017). https://doi.org/10.1021/jacs.7b09755

    Article  CAS  Google Scholar 

  60. S. Joshi, Q. Wang, A. Puntambekar, V. Chakrapani, Facile synthesis of large area two-dimensional layers of transition-metal nitride and their use as insertion electrodes. ACS Energy Lett 2, 1257–1262 (2017). https://doi.org/10.1021/acsenergylett.7b00240

    Article  CAS  Google Scholar 

  61. J. Jia, T. Xiong, L. Zhao et al., Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11, 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607

    Article  CAS  Google Scholar 

  62. S. Chaitoglou, P. Tsipas, T. Speliotis et al., Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo2C heterostructures over liquid catalyst. J Cryst Growth 495, 46–53 (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.015

    Article  CAS  Google Scholar 

  63. Q.J. Bin, Y. Gong, W.J. Zuo et al., One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α- Mo2C. Phys Rev B 95, 1–6 (2017). https://doi.org/10.1103/PhysRevB.95.201403

    Article  Google Scholar 

  64. Q.J. Bin, Y. Gong, H. Liu et al., Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures. Phys Rev Mater 2, 1–7 (2018). https://doi.org/10.1103/PhysRevMaterials.2.054002

    Article  Google Scholar 

  65. R. Deng, H. Zhang, Y. Zhang et al., Graphene/Mo2C heterostructure directly grown by chemical vapor deposition. Chinese Phys B 26, 067901 (2017). https://doi.org/10.1088/1674-1056/26/6/067901

    Article  CAS  Google Scholar 

  66. P. Paul, P. Chakraborty, T. Das et al., Properties at the interface of graphene and Ti2C MXene. Phys Rev B 96, 1–8 (2017). https://doi.org/10.1103/PhysRevB.96.035435

    Article  Google Scholar 

  67. C. Peng, Z. Kuai, T. Zeng et al., WO3 Nanorods/MXene composite as high performance electrode for supercapacitors. J Alloys Compd 810, 151928 (2019). https://doi.org/10.1016/j.jallcom.2019.151928

    Article  CAS  Google Scholar 

  68. J. Zhou, X. Zha, X. Zhou et al., Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841–3850 (2017). https://doi.org/10.1021/acsnano.7b00030

    Article  CAS  Google Scholar 

  69. Z. Fan, Y. Wang, Z. Xie et al., A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10, 9642–9652 (2018). https://doi.org/10.1039/c8nr01550c

    Article  CAS  Google Scholar 

  70. N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, MXene-on-paper coplanar microsupercapacitors. . Adv Energy Mater 6, 1601372 (2016). https://doi.org/10.1002/aenm.201601372

    Article  CAS  Google Scholar 

  71. M. Boota, B. Anasori, C. Voigt et al., Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705

    Article  CAS  Google Scholar 

  72. W. Liu, Z. Wang, Y. Su et al., Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv Energy Mater 7, 1–10 (2017). https://doi.org/10.1002/aenm.201602834

    Article  CAS  Google Scholar 

  73. H. Li, Y. Hou, F. Wang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater 7, 2–7 (2017). https://doi.org/10.1002/aenm.201601847

    Article  CAS  Google Scholar 

  74. J. Luo, W. Zhang, H. Yuan et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668

    Article  CAS  Google Scholar 

  75. C. Zhang, M. Beidaghi, M. Naguib et al., Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem Mater 28, 3937–3943 (2016). https://doi.org/10.1021/acs.chemmater.6b01244

    Article  CAS  Google Scholar 

  76. A. Byeon, A.M. Glushenkov, B. Anasori et al., Lithium-ion capacitors with 2D Nb2CTx (MXene) – carbon nanotube electrodes. J Power Sources 326, 686–694 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.066

    Article  CAS  Google Scholar 

  77. S. Kajiyama, L. Szabova, H. Iinuma et al., Enhanced Li-Ion accessibility in MXene titanium carbide by steric chloride termination. Adv Energy Mater 7, 1–8 (2017). https://doi.org/10.1002/aenm.201601873

    Article  CAS  Google Scholar 

  78. J. Luo, J. Zheng, J. Nai et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv Funct Mater 29, 1808107 (2019). https://doi.org/10.1002/adfm.201808107

    Article  CAS  Google Scholar 

  79. X. Li, J. Zhu, L. Wang et al., In–situ growth of carbon nanotubes on two–dimensional titanium carbide for enhanced electrochemical performance. Electrochim Acta 258, 291–301 (2017). https://doi.org/10.1016/j.electacta.2017.11.004

    Article  CAS  Google Scholar 

  80. M.Q. Zhao, C.E. Ren, Z. Ling et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140

    Article  CAS  Google Scholar 

  81. R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl Mater Interf 8, 18806–18814 (2016). https://doi.org/10.1021/acsami.6b04481

    Article  CAS  Google Scholar 

  82. F. Li, Y.L. Liu, G.G. Wang et al., Few-layered Ti3C2TX MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J Mater Chem A 7, 22631–22641 (2019). https://doi.org/10.1039/c9ta08144e

    Article  CAS  Google Scholar 

  83. Q. Jiang, N. Kurra, M. Alhabeb et al., All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043

    Article  CAS  Google Scholar 

  84. Z. Gao, W. Zheng, L.Y.S. Lee, Highly enhanced pseudocapacitive performance of vanadium-doped MXenes in neutral electrolytes. Small 15, 1902649 (2019). https://doi.org/10.1002/smll.201902649

    Article  CAS  Google Scholar 

  85. J. Luo, C. Fang, C. Jin et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J Mater Chem A 6, 7794–7806 (2018). https://doi.org/10.1039/c8ta02068j

    Article  CAS  Google Scholar 

  86. M. Ghidiu, S. Kota, J. Halim et al., Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater 29, 1099–1106 (2017). https://doi.org/10.1021/acs.chemmater.6b04234

    Article  CAS  Google Scholar 

  87. C.C. Raj, R. Prasanth, Review—advent of TiO2 nanotubes as supercapacitor electrode. J Electrochem Soc 165, E345–E358 (2018). https://doi.org/10.1149/2.0561809jes

    Article  CAS  Google Scholar 

  88. B. Pal, S. Yang, S. Ramesh et al., Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1, 3807–3835 (2019). https://doi.org/10.1039/c9na00374f

    Article  Google Scholar 

  89. X. Hui, X. Ge, R. Zhao et al., Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv Funct Mater 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190

    Article  CAS  Google Scholar 

  90. Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018). https://doi.org/10.1021/acsnano.8b01914

    Article  CAS  Google Scholar 

  91. H. Shao, Z. Lin, K. Xu et al., Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Mater 18, 456–461 (2019). https://doi.org/10.1016/j.ensm.2018.12.017

    Article  Google Scholar 

  92. Y. Xia, T.S. Mathis, M. Zhao et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z

    Article  CAS  Google Scholar 

  93. C. Zhan, M. Naguib, M. Lukatskaya et al., Understanding the MXene pseudocapacitance. J Phys Chem Lett 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200

    Article  CAS  Google Scholar 

  94. C. Wang, X. Wang, L. Zhang, L. Yin, MXene for high energy and power density: a perspective. J Phys Energy 2, 041002 (2020). https://doi.org/10.1088/2515-7655/abab66

    Article  CAS  Google Scholar 

  95. M. Hu, H. Zhang, T. Hu et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev 49, 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a

    Article  CAS  Google Scholar 

  96. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13, 2078–2085 (2013). https://doi.org/10.1021/nl400378j

    Article  CAS  Google Scholar 

  97. M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc Chem Res 51, 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481

    Article  CAS  Google Scholar 

  98. M.D. Levi, M.R. Lukatskaya, S. Sigalov et al., Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv Energy Mater 5, 1–11 (2015). https://doi.org/10.1002/aenm.201400815

    Article  CAS  Google Scholar 

  99. Q. Fu, X. Wang, N. Zhang et al., Self-assembled Ti3C2TxSCNT composite electrode with improved electrochemical performance for supercapacitor. J Coll Interf Sci 511, 128–134 (2018). https://doi.org/10.1016/j.jcis.2017.09.104

    Article  CAS  Google Scholar 

  100. Y. Tang, J. Zhu, C. Yang, F. Wang, Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J Alloys Compd 685, 194–201 (2016). https://doi.org/10.1016/j.jallcom.2016.05.221

    Article  CAS  Google Scholar 

  101. M. Zhu, Y. Huang, Q. Deng et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6, 1600969 (2016). https://doi.org/10.1002/aenm.201600969

    Article  CAS  Google Scholar 

  102. M.R. Lukatskaya, O. Mashtalir, C.E. Ren et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488

    Article  CAS  Google Scholar 

  103. L. Qin, Q. Tao, A. El Ghazaly et al., High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Adv Funct Mater 28, 1–8 (2018). https://doi.org/10.1002/adfm.201703808

    Article  CAS  Google Scholar 

  104. Y. Tian, C. Yang, Y. Luo et al., Understanding MXene-based “symmetric” supercapacitors and redox electrolyte energy storage. ACS Appl Energy Mater 3, 5006–5014 (2020). https://doi.org/10.1021/acsaem.0c00527

    Article  CAS  Google Scholar 

  105. P. Forouzandeh, S.C. Pillai, MXenes-based nanocomposites for supercapacitor applications. Curr Opin Chem Eng 33, 100710 (2021). https://doi.org/10.1016/j.coche.2021.100710

    Article  Google Scholar 

  106. S. He, Q. Zhu, R.A. Soomro, B. Xu, MXene derivatives for energy storage applications. Sustain Energy Fuels 4, 4988–5004 (2020). https://doi.org/10.1039/d0se00927j

    Article  CAS  Google Scholar 

  107. N.C. Osti, E. Mamontov, Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications. Sustain Energy Fuels 4, 1554–1576 (2020). https://doi.org/10.1039/c9se00829b

    Article  CAS  Google Scholar 

  108. K.D. Fong, T. Wang, S.K. Smoukov, Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels 1, 1857–1874 (2017). https://doi.org/10.1039/c7se00339k

    Article  CAS  Google Scholar 

  109. X. Gao, X. Du, T.S. Mathis et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat Commun 11, 1–9 (2020). https://doi.org/10.1038/s41467-020-19992-3

    Article  CAS  Google Scholar 

  110. J.V. Vaghasiya, C.C. Mayorga-Martinez, Z. Sofer, M. Pumera, MXene-based flexible supercapacitors: influence of an organic ionic conductor electrolyte on the performance. ACS Appl Mater Interf 12, 53039–53048 (2020). https://doi.org/10.1021/acsami.0c12879

    Article  CAS  Google Scholar 

  111. Y. Wen, T.E. Rufford, X. Chen et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009

    Article  CAS  Google Scholar 

  112. Z. Ling, C.E. Ren, M.Q. Zhao et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111

    Article  CAS  Google Scholar 

  113. Y. Wang, X. Wang, X. Li et al., Engineering 3D Ion transport channels for flexible MXene films with superior capacitive performance. Adv Funct Mater 29, 1–10 (2019). https://doi.org/10.1002/adfm.201900326

    Article  CAS  Google Scholar 

  114. R. Singhal, D. Thorne, P.K. Lemaire et al., Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications. AIP Adv 10, 035307 (2020). https://doi.org/10.1063/1.5132713

    Article  CAS  Google Scholar 

  115. S. Wustoni, A. Saleh, J.K. El-Demellawi et al., MXene improves the stability and electrochemical performance of electropolymerized PEDOT films. APL Mater 8, 121105 (2020). https://doi.org/10.1063/5.0023187

    Article  CAS  Google Scholar 

  116. K.C. Tsay, L. Zhang, J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60, 428–436 (2012). https://doi.org/10.1016/j.electacta.2011.11.087

    Article  CAS  Google Scholar 

  117. Y. Wang, Y. Li, Z. Qiu et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J Mater Chem A 6, 11189–11197 (2018). https://doi.org/10.1039/c8ta00122g

    Article  CAS  Google Scholar 

  118. D. Seo, M.R. Kim, J. Kyu Song et al., Hollow Ti3C2 MXene/carbon nanofibers as an advanced anode material for lithium-ion batteries. ChemElectroChem 9, 1–8 (2022). https://doi.org/10.1002/celc.202101344

    Article  CAS  Google Scholar 

  119. J. Li, L. Han, Y. Li et al., MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem Eng J 380, 122590 (2020). https://doi.org/10.1016/j.cej.2019.122590

    Article  CAS  Google Scholar 

  120. J. Zhou, S. Lin, Y. Huang et al., Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem Eng J 373, 203–212 (2019). https://doi.org/10.1016/j.cej.2019.05.037

    Article  CAS  Google Scholar 

  121. P. Huang, S. Zhang, H. Ying et al., Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res 14, 1218–1227 (2021). https://doi.org/10.1007/s12274-020-3221-y

    Article  CAS  Google Scholar 

  122. G. Mu, D. Mu, B. Wu et al., Microsphere-Like SiO2/MXene hybrid material enabling high performance anode for lithium ion batteries. Small 16, 1905430 (2020). https://doi.org/10.1002/smll.201905430

    Article  CAS  Google Scholar 

  123. J. Luo, X. Tao, J. Zhang et al., Sn4+ Ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333

    Article  CAS  Google Scholar 

  124. Y. Zhao, C. Liu, R. Yi et al., Facile preparation of Co3O4 nanoparticles incorporating with highly conductive MXene nanosheets as high-performance anodes for lithium-ion batteries. Electrochim Acta 345, 136203 (2020). https://doi.org/10.1016/j.electacta.2020.136203

    Article  CAS  Google Scholar 

  125. Q. Zhao, Q. Zhu, J. Miao et al., 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 11, 8442–8448 (2019). https://doi.org/10.1039/c8nr09653h

    Article  CAS  Google Scholar 

  126. Y. Fan, K. Liu, A. Ali et al., 2D TiN@C sheets derived from MXene as highly efficient polysulfides traps and catalysts for lithium−sulfur batteries. Electrochim Acta 384, 138187 (2021). https://doi.org/10.1016/j.electacta.2021.138187

    Article  CAS  Google Scholar 

  127. C. Du, J. Wu, P. Yang et al., Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim Acta 295, 1067–1074 (2019). https://doi.org/10.1016/j.electacta.2018.11.143

    Article  CAS  Google Scholar 

  128. B. Zhang, C. Luo, G. Zhou et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading. Adv Funct Mater 31, 1–9 (2021). https://doi.org/10.1002/adfm.202100793

    Article  CAS  Google Scholar 

  129. L. Yin, G. Xu, P. Nie et al., MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem Eng J 352, 695–703 (2018). https://doi.org/10.1016/j.cej.2018.07.063

    Article  CAS  Google Scholar 

  130. D. Xiong, S. Huang, D. Fang et al., Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries. Small 17, 1–10 (2021). https://doi.org/10.1002/smll.202007442

    Article  CAS  Google Scholar 

  131. L. Lv, C. Guo, W. Sun, Y. Wang, Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small (2018). https://doi.org/10.1002/smll.201804338

    Article  Google Scholar 

  132. Z. Xiao, Z. Li, P. Li et al., Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 13, 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177

    Article  CAS  Google Scholar 

  133. F. Wu, Y. Jiang, Z. Ye et al., A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem A 7, 1315–1322 (2019). https://doi.org/10.1039/c8ta11419f

    Article  CAS  Google Scholar 

  134. Z. Yuan, L. Wang, D. Li et al., Carbon-reinforced Nb2CTxMXene/MoS2Nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 15, 7439–7450 (2021). https://doi.org/10.1021/acsnano.1c00849

    Article  CAS  Google Scholar 

  135. Y. Wu, P. Nie, J. Jiang et al., MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. ChemElectroChem 4, 1560–1565 (2017). https://doi.org/10.1002/celc.201700060

    Article  CAS  Google Scholar 

  136. L. Du, H. Duan, Q. Xia et al., Hybrid charge-storage route to Nb2CTx MXene as anode for sodium-ion batteries. ChemistrySelect 5, 1186–1192 (2020). https://doi.org/10.1002/slct.201903888

    Article  CAS  Google Scholar 

  137. M. Zhao, X. Xie, C.E. Ren et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410

    Article  CAS  Google Scholar 

  138. S. Arnold, A. Gentile, Y. Li et al., Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries. J Mater Chem A 7, 10569–10585 (2022). https://doi.org/10.1039/d2ta00542e

    Article  CAS  Google Scholar 

  139. J. Ding, C. Tang, G. Zhu et al., Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance. ACS Appl Energy Mater 4, 846–854 (2021). https://doi.org/10.1021/acsaem.0c02730

    Article  CAS  Google Scholar 

  140. X. Guo, J. Zhang, J. Song et al., MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater 14, 306–313 (2018). https://doi.org/10.1016/j.ensm.2018.05.010

    Article  Google Scholar 

  141. X. Xie, M.Q. Zhao, B. Anasori et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005

    Article  CAS  Google Scholar 

  142. Y. Wu, P. Nie, L. Wu et al., 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem Eng J 334, 932–938 (2018). https://doi.org/10.1016/j.cej.2017.10.007

    Article  CAS  Google Scholar 

  143. J. Zhu, M. Wang, M. Lyu et al., Two-dimensional titanium carbonitride Mxene for high-performance sodium ion batteries. ACS Appl Nano Mater 1, 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330

    Article  CAS  Google Scholar 

  144. M. Naguib, J. Come, B. Dyatkin et al., MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem commun 16, 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002

    Article  CAS  Google Scholar 

  145. W. Li, H. Wang, E. Matios, J. Luo, Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem Soc Rev 49, 3783–3805 (2020). https://doi.org/10.1039/d0cs00033g

    Article  CAS  Google Scholar 

  146. H. Kim, H. Kim, Z. Ding et al., Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater (2016). https://doi.org/10.1002/aenm.201600943

    Article  Google Scholar 

  147. S. Kajiyama, L. Szabova, K. Sodeyama et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958

    Article  CAS  Google Scholar 

  148. C. Ferrara, A. Gentile, S. Marchionna et al., The missing piece: the structure of the Ti3C2Tx MXene and its behavior as negative electrode in sodium ion batteries. Nano Lett 21, 8290–8297 (2021). https://doi.org/10.1021/acs.nanolett.1c02809

    Article  CAS  Google Scholar 

  149. K. Zhu, C. Wang, Z. Chi et al., How far away are lithium-sulfur batteries from commercialization? Front Energy Res 7, 123 (2019). https://doi.org/10.3389/fenrg.2019.00123

    Article  Google Scholar 

  150. Y. Liu, A.K. Haridas, K.K. Cho et al., Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J Phys Chem C 121, 26172–26179 (2017). https://doi.org/10.1021/acs.jpcc.7b06625

    Article  CAS  Google Scholar 

  151. J.B. Robinson, K. Xi, R.V. Kumar et al., 2021 roadmap on lithium sulfur batteries. J Phys Energy 3, 031501 (2021). https://doi.org/10.1088/2515-7655/abdb9a

    Article  CAS  Google Scholar 

  152. M. Li, X. Li, G. Qin et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021). https://doi.org/10.1021/acsnano.0c07972

    Article  CAS  Google Scholar 

  153. R. Venkatkarthick, N. Rodthongkum, X. Zhang et al., Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl Energy Mater 3, 4677–4689 (2020). https://doi.org/10.1021/acsaem.0c00309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Abhilash Pullanchiyodan and Prasanth Raghavan, acknowledge The Kerala State Higher Education Council for financial support through the Chief Minster’s Nava Kerala Postdoctoral Fellowship (No. KSHEC-A3/344/Govt. Kerala-NKPDF/2022). Leya Rose Raphael acknowledge Cochin University of Science and Technology (CUSAT), Kerala for the financial support (UJRF/SRF). Manjusha Shelke acknowledge Council of Scientific and Industrial Research, (CSIR) India for Grant No. MLP100626. Kundan and Meenakshi acknowledge the University Grants Commission (UGC) for the financial support (JRF/SRF fellowship).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjusha V. Shelke or Prasanth Raghavan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prasanth Raghavan and Manjusha V. Shelke were guest editors of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5825 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasnik, K., Pawar, M.D., Raphael, L.R. et al. MXenes: Advances in the synthesis and application in supercapacitors and batteries. Journal of Materials Research 37, 3865–3889 (2022). https://doi.org/10.1557/s43578-022-00770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00770-4

Navigation