Skip to main content

Advertisement

Log in

Hybrids gel electrolytes with pending polyhedral oligomeric silsesquioxane toward improving interfacial stability for lithium ion batteries

  • Invited Paper
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hybrids gel electrolytes with polyhedral oligomeric silsesquioxane hung on cross-linked networks through chemical bond are designed toward improving interfacial stability for Lithium ion batteries. The corresponding hybrids gel electrolytes deliver an ionic conductivity of 2.25 × 10–3 S cm−1, lithium-ion transference number (\(t_{{{\text{Li}}^{ + } }}\)) of 0.34 at 26 °C and wide electrochemical windows of 5.0 V. The Li/Li symmetric cells with this hybrid gel polymer electrolytes (HGPEs) exhibit excellent long-term stability up to 2000 h at 0.1 mA cm−2. In particular, the LiFePO4/Li cells assembled with HGPEs exhibit good cycling performance and rate capability. The initial discharge capacity of LiFePO4/HGPEs-3/Li is 156.6 mAh g−1 at a current rate of 0.1C at 26 °C. The capacity of LiFePO4/HGPEs-3/Li after 100 cycles is 131.7 mAh g−1 with a high coulombic efficiency over 99% throughout the whole cycling process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Y. Sun, J. Huang, H. Xiang, X. Liang, Y. Feng, Y. Yu, 2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode. J. Mater. Sci. Technol. 55, 198 (2020)

    Google Scholar 

  2. D. Zhou, R. Liu, J. Zhang, X. Qi, Y.-B. He, B. Li, Q.-H. Yang, Y.-S. Hu, F. Kang, In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy 33, 45 (2017)

    CAS  Google Scholar 

  3. Z. Yan, H.-Y. Pan, J.-Y. Wang, R.-S. Chen, Q. Li, F. Luo, X.-Q. Yu, H. Li, Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Met. 40, 1357 (2020)

    Google Scholar 

  4. C. Zhang, T. Jin, G. Cheng, S. Yuan, Z. Sun, N.-W. Li, L. Yu, S. Ding, Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. J. Mater. Chem. A 9, 13388 (2021)

    CAS  Google Scholar 

  5. X. Zeng, L. Dong, J. Fu, L. Chen, J. Zhou, P. Zong, G. Liu, L. Shi, Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries. Chem. Eng. J. 428, 131100 (2022)

    CAS  Google Scholar 

  6. L. Balo, Shalu, H. Gupta, V. Kumar Singh, R. Kumar Singh, Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim. Acta 230, 123 (2017)

    CAS  Google Scholar 

  7. X. Zhong, J. Tang, L. Cao, W. Kong, Z. Sun, H. Cheng, Z. Lu, H. Pan, B. Xu, Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochim. Acta 244, 112 (2017)

    CAS  Google Scholar 

  8. Q. Lu, Y.-B. He, Q. Yu, B. Li, Y.V. Kaneti, Y. Yao, F. Kang, Q.-H. Yang, Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017)

    Google Scholar 

  9. G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Structure of the polymer electrolyte poly(ethylene oxide)6_LiAsF6. Nature 398, 792 (1999)

    CAS  Google Scholar 

  10. L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038 (2016)

    CAS  Google Scholar 

  11. A.R. Polu, H.-W. Rhee, Effect of organic-inorganic hybrid nanoparticles (POSS-PEG(n= 4)) on thermal, mechanical, and electrical properties of PEO-based solid polymer electrolytes. Adv. Polym. Technol. 36, 145 (2017)

    CAS  Google Scholar 

  12. V. Chaudoy, F. Tran Van, M. Deschamps, F. Ghamouss, Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. J. Power Sources 342, 872 (2017)

    CAS  Google Scholar 

  13. M.S. Grewal, M. Tanaka, H. Kawakami, Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all-solid-state lithium ion batteries. Polym. Int. 68, 684 (2019)

    CAS  Google Scholar 

  14. C.J. Kloxin, C.N. Bowman, Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161 (2013)

    CAS  Google Scholar 

  15. X.Y. Luo, Y.H. Liao, Y.M. Zhu, M.S. Li, F.B. Chen, Q.M. Huang, W.S. Li, Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries. J. Power Sources 348, 229 (2017)

    CAS  Google Scholar 

  16. S.H. Siyal, M.S. Javed, A.H. Jatoi, J.L. Lan, Y. Yu, M. Saleem, X. Yang, In situ curing technology for dual ceramic composed by organic-inorganic functional polymer gel electrolyte for dendritic-free and robust lithium-metal batteries. Adv. Mater. Int. 7, 2000830 (2020)

    CAS  Google Scholar 

  17. J. Guan, N. Li, L. Yu, Artificial interphase layers for lithium metal anode. Acta Phys. Chim. Sin. 7, 2009011 (2020)

    Google Scholar 

  18. C. Chen, J. Guan, N.W. Li, Y. Lu, D. Luan, C.H. Zhang, G. Cheng, L. Yu, X.W.D. Lou, Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes. Adv. Mater. 33, e2100608 (2021)

    Google Scholar 

  19. A.R. Polu, H.-W. Rhee, Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J. Ind. Eng. Chem. 31, 323 (2015)

    CAS  Google Scholar 

  20. J. Yang, Y. Xu, W. Jiang, B. Jiang, Y. Huang, The thermal transformation process and mechanical strength evolution of ceramifiable silicone composites. Ceram. Int. 47, 21276 (2021)

    CAS  Google Scholar 

  21. H.Z. Liu, S.X. Zheng, Polyurethane networks nanoreinforced by polyhedral oligorneric silsesquioxane. Macromol. Rapid Commun. 26, 196 (2005)

    Google Scholar 

  22. S. Bizet, J. Galy, J.F. Gerard, Structure-property relationships in organic-inorganic nanomaterials based on methacryl-POSS and dimethacrylate networks. Macromolecules 39, 2574 (2006)

    CAS  Google Scholar 

  23. Q. Liu, W.T. Ren, Y. Zhang, Y.X. Zhang, Curing reactions and properties of organic-inorganic composites from hydrogenated carboxylated nitrile rubber and epoxycyclohexyl polyhedral oligomeric silsesquioxanes. Polym. Int. 60, 422 (2011)

    CAS  Google Scholar 

  24. A.R. Polu, H.-W. Rhee, M. Jeevan Kumar Reddy, A.M. Shanmugharaj, S.H. Ryu, D.K. Kim, Effect of POSS-PEG hybrid nanoparticles on cycling performance of polyether-LiDFOB based solid polymer electrolytes for all solid-state Li-ion battery applications. J. Ind. Eng. Chem. 45, 68 (2017)

    CAS  Google Scholar 

  25. J. Fu, Q. Lu, D. Shang, L. Chen, Y. Jiang, Y. Xu, J. Yin, X. Dong, W. Deng, S. Yuan, A novel room temperature POSS ionic liquid-based solid polymer electrolyte. J. Mater. Sci. 53, 8420 (2018)

    CAS  Google Scholar 

  26. J. Zhang, X. Li, Y. Li, H. Wang, C. Ma, Y. Wang, S. Hu, W. Wei, Cross-linked nanohybrid polymer electrolytes with POSS cross-linker for solid-state lithium ion batteries. Front. Chem. 6, 1 (2018)

    Google Scholar 

  27. X. Song, W. Ding, B. Cheng, J. Xing, Electrospun poly(vinylidene-fluoride)/POSS nanofiber membrane-based polymer electrolytes for lithium ion batteries. Polym. Compos. 38, 629 (2017)

    CAS  Google Scholar 

  28. J. Fu, Y. Xu, L. Dong, L. Chen, Q. Lu, M. Li, X. Zeng, S. Dai, G. Chen, L. Shi, Multiclaw-shaped octasilsesquioxanes functionalized ionic liquids toward organic-inorganic composite electrolytes for lithium-ion batteries. Chem. Eng. J. 405, 126942 (2021)

    CAS  Google Scholar 

  29. Q. Lu, L.N. Dong, L.Y. Chen, J.F. Fu, L.Y. Shi, M.M. Li, X.F. Zeng, H. Lei, F. Zheng, Inorganic-organic gel electrolytes with 3D cross-linking star-shaped structured networks for lithium ion batteries. Chem. Eng. J. 393, 124708 (2020)

    CAS  Google Scholar 

  30. G.Y. Jung, J.H. Choi, J.K. Lee, Thermal behavior and ion conductivity of polyethylene oxide/polyhedral oligomeric silsesquioxane nanocomposite electrolytes. Adv. Polym. Technol. 34, 21499 (2015)

    Google Scholar 

  31. Q. Pan, D.M. Smith, H. Qi, S. Wang, C.Y. Li, Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995 (2015)

    CAS  Google Scholar 

  32. W. Na, A.S. Lee, J.H. Lee, S.M. Hong, E. Kim, C.M. Koo, Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors. Solid State Ion. 309, 27 (2017)

    CAS  Google Scholar 

  33. Y. Tong, H. Lyu, Y. Xu, B.P. Thapaliya, P. Li, X.-G. Sun, S. Dai, All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. J. Mater. Chem. A 6, 14847 (2018)

    CAS  Google Scholar 

  34. R. Na, N. Lu, S. Zhang, G. Huo, Y. Yang, C. Zhang, Y. Mu, Y. Luo, G. Wang, Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors. Electrochim. Acta 290, 262 (2018)

    CAS  Google Scholar 

  35. C.-H. Tsao, H.-M. Su, H.-T. Huang, P.-L. Kuo, H. Teng, Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries. J. Membr. Sci. 572, 382 (2019)

    CAS  Google Scholar 

  36. H. Zhao, N. Deng, J. Yan, W. Kang, J. Ju, L. Wang, Z. Li, B. Cheng, Effect of OctaphenylPolyhedral oligomeric silsesquioxane on the electrospun Poly-m-phenylene isophthalamid separators for lithium-ion batteries with high safety and excellent electrochemical performance. Chem. Eng. J. 356, 11 (2019)

    CAS  Google Scholar 

  37. F. Wu, N. Chen, R. Chen, L. Wang, L. Li, Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy 31, 9 (2017)

    CAS  Google Scholar 

  38. L. Zhao, J. Fu, Z. Du, X. Jia, Y. Qu, F. Yu, J. Du, Y. Chen, High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 593, 117428 (2020)

    CAS  Google Scholar 

  39. Y. Huang, B. Liu, H. Cao, Y. Lin, S. Tang, M. Wang, X. Li, Novel gel polymer electrolyte based on matrix of PMMA modified with polyhedral oligomeric silsesquioxane. J. Solid State Electrochem. 21, 2291 (2017)

    CAS  Google Scholar 

  40. J. Zhang, C. Ma, J. Liu, L. Chen, A. Pan, W. Wei, Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. J. Membr. Sci. 509, 138 (2016)

    CAS  Google Scholar 

  41. J. Li, Q. Wang, Z. Wang, Y. Cao, J. Zhu, Y. Lou, Y. Zhao, L. Shi, S. Yuan, Evaporation and in-situ gelation induced porous hybrid film without template enhancing the performance of lithium ion battery separator. J. Colloid Interfaces Sci. 595, 142 (2021)

    CAS  Google Scholar 

  42. J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G. Yu, A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096 (2018)

    CAS  Google Scholar 

  43. T.-C. Wang, C.-Y. Tsai, Y.-L. Liu, Solid polymer electrolytes based on cross-linked polybenzoxazine possessing poly(ethylene oxide) segments enhancing cycling performance of lithium metal batteries. ACS Sustain. Chem. Eng. 9, 6274 (2021)

    CAS  Google Scholar 

  44. B. Liu, Y. Huang, H. Cao, L. Zhao, Y. Huang, A. Song, Y. Lin, X. Li, M. Wang, A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J. Membr. Sci. 545, 140 (2018)

    CAS  Google Scholar 

  45. J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell, Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114 (2018)

    CAS  Google Scholar 

  46. Q. Lu, J.F. Fu, L.Y. Chen, D.P. Shang, M.M. Li, Y.F. Xu, R.R. Jia, S. Yuan, L.Y. Shi, Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. J. Power Sources 414, 31 (2019)

    CAS  Google Scholar 

  47. Y. Lu, S.S. Moganty, J.L. Schaefer, L.A. Archer, Ionic liquid-nanoparticle hybrid electrolytes. J. Mater. Chem. 22, 4066 (2012)

    CAS  Google Scholar 

  48. B. Zhang, Y. Zhang, N. Zhang, J. Liu, L. Cong, J. Liu, L. Sun, A. Mauger, C.M. Julien, H. Xie, X. Pan, Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries. J. Power Sources 428, 93 (2019)

    CAS  Google Scholar 

  49. H. Xie, Y. Liao, P. Sun, T. Chen, M. Rao, W. Li, Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim. Acta 127, 327 (2014)

    CAS  Google Scholar 

  50. W. Zhang, C.D. Zhao, X.L. Wu, Research progresses on interfaces in solid-state sodium batteries: a topic review. Adv. Mater. Interfaces 7, 2001444 (2020)

    CAS  Google Scholar 

  51. X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C.W. Nan, Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019)

    Google Scholar 

  52. G. Jiang, K. Li, F. Yu, X. Li, J. Mao, W. Jiang, F. Sun, B. Dai, Y. Li, Robust artificial solid-electrolyte interfaces with biomimetic ionic channels for dendrite-free Li metal anodes. Adv. Energy Mater. 11, 2003496 (2020)

    Google Scholar 

  53. Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li, S. Liu, K. Xie, New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS appl. Mater. Interfaces 9, 41837 (2017)

    CAS  Google Scholar 

  54. Z. Dong, J. Wei, H. Yue, K. Zhang, L. Wang, X. Li, Z. Zhang, W. Yang, S. Yang, Multifunctional organosilicon compound contributes to stable operation of high-voltage lithium metal batteries. J. Colloid Interfaces Sci. 595, 35 (2021)

    CAS  Google Scholar 

  55. J. Meng, F. Chu, J. Hu, C. Li, Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019)

    Google Scholar 

  56. P. Liu, J. Zhang, L. Zhong, S. Huang, L. Gong, D. Han, S. Wang, M. Xiao, Y. Meng, interphase building of organic-inorganic hybrid polymer solid electrolyte with uniform intermolecular Li(+) path for stable lithium metal batteries. Small 17, e2102454 (2021)

    Google Scholar 

  57. F. Huang, L. Wang, D. Qin, Z. Xu, M. Jin, Y. Chen, X. Zeng, Z. Dai, Constructing heterostructured bimetallic selenides on an N-doped carbon nanoframework as anodes for ultrastable Na-ion batteries. ACS Appl. Mater. Interfaces 14, 1222 (2022)

    CAS  Google Scholar 

  58. P.L. Kuo, C.H. Tsao, C.H. Hsu, S.T. Chen, H.M. Hsu, A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J. Membr. Sci. 499, 462 (2016)

    CAS  Google Scholar 

  59. E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011)

    CAS  Google Scholar 

  60. M. Li, H. Li, J.-L. Lan, Y. Yu, Z. Du, X. Yang, Integrative preparation of mesoporous epoxy resin–ceramic composite electrolytes with multilayer structure for dendrite-free lithium metal batteries. J. Mater. Chem. A 6, 19094 (2018)

    CAS  Google Scholar 

  61. Q. Pan, D. Barbash, D.M. Smith, H. Qi, S.E. Gleeson, C.Y. Li, Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv. Energy Mater. 7, 1701231 (2017)

    Google Scholar 

  62. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)

    CAS  Google Scholar 

  63. K. Zelič, T. Katrašnik, Thermodynamically consistent derivation of chemical potential of a battery solid particle from the regular solution theory applied to LiFePO4. Sci. Rep. 9, 1 (2019)

    Google Scholar 

  64. L. Dong, X. Zeng, J. Fu, L. Chen, J. Zhou, S. Dai, L. Shi, Cross-linked ionic copolymer solid electrolytes with loose Coordination-assisted lithium transport for lithium batteries. Chem. Eng. J. 423, 130209 (2021)

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the auspices from the Natural Science Foundation of China (52173259), the Municipal Natural Science Foundation of Shanghai 2014 (Grant NO. 14ZR1414700), Engineering Research Center of Material Composition and Advanced Dispersion Technology, Ministry of Education, Shanghai Engineering Research Center of New Materials and Application for Resources and Environment (21DZ2280600), the Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials (Shanghai) (19DZ2293100), Shanghai Municipal Science and Technology Commission. We thank Prof. H. Zhang at Instrumental Analysis & Research Center of Shanghai University for assistance with the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifang Fu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fu, J., Zeng, X. et al. Hybrids gel electrolytes with pending polyhedral oligomeric silsesquioxane toward improving interfacial stability for lithium ion batteries. Journal of Materials Research 37, 3906–3921 (2022). https://doi.org/10.1557/s43578-022-00529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00529-x

Keywords

Navigation