Skip to main content
Log in

Understanding the flash sintering behavior for hydroxyapatite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A study on flash sintering of hydroxyapatite (HA) is presented in this work. Electric fields up to 2000 V cm−1 were tested, resulting in sintering at furnace temperature as low as 850 °C and density in excess to 90%. XRD and FTIR analysis show no decomposition of HA into other phases for conventional as well as for flash sintering. In general, the power (in log scale) versus temperature curve for HA is found to be different from that of other oxide materials and this is attributed to the microstructural changes taking place due to the dehydroxylation reaction occurring during flash sintering. In addition, high furnace temperature and high max power density during flash sintering seems to lead to the partial melting of the samples, giving (002) preferably oriented microstructure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All relevant data have been used in this manuscript.

References

  1. H. Oonishi, Orthopaedic applications of hydroxyapatite. Biomaterials 12, 171–178 (1991). https://doi.org/10.1016/0142-9612(91)90196-H

    Article  CAS  Google Scholar 

  2. M. Fanovich, M. Castro, J.M. Porto López, Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceram. Int. 25, 517–522 (1999). https://doi.org/10.1016/S0272-8842(97)00087-4

    Article  CAS  Google Scholar 

  3. Z. Zyman, V. Glushko, V. Filippenko, V. Radchenko, V. Mezentsev, Nonstoichiometric hydroxyapatite granules for orthopaedic applications. J. Mater. Sci. Mater. Med. 15, 551–558 (2004). https://doi.org/10.1023/B:JMSM.0000026099.74563.db

    Article  CAS  Google Scholar 

  4. W. Suchanek, M. Yashima, M. Kakihana, M. Yoshimura, Hydroxyapatite ceramics with selected sintering additives. Biomaterials 18, 923–933 (1997). https://doi.org/10.1016/S0142-9612(97)00019-7

    Article  CAS  Google Scholar 

  5. S. Raynaud, E. Champion, J. Lafon, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials 23, 1081–1089 (2002). https://doi.org/10.1016/S0142-9612(01)00220-4

    Article  CAS  Google Scholar 

  6. D. Veljović, B. Jokić, R. Petrović, E. Palcevskis, A. Dindune, I.N. Mihailescu, D. Janaćković, Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram. Int. 35, 1407–1413 (2009). https://doi.org/10.1016/j.ceramint.2008.07.007

    Article  CAS  Google Scholar 

  7. F. Wakai, Y. Kodama, S. Sakaguchi, T. Nonami, Superplasticity of hot isostatically pressed hydroxyapatite. J. Am. Ceram. Soc. 73, 457–460 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06537.x

    Article  CAS  Google Scholar 

  8. M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93, 3556–3559 (2010). https://doi.org/10.1111/j.1551-2916.2010.04089.x

    Article  CAS  Google Scholar 

  9. Y.W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P. Cheang, Spark plasma sintering of hydroxyapatite powders. Biomaterials 23, 37–43 (2002). https://doi.org/10.1016/S0142-9612(01)00076-X

    Article  CAS  Google Scholar 

  10. R. Raj, Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32, 2293–2301 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.030

    Article  CAS  Google Scholar 

  11. M. Biesuz, V.M. Sglavo, Flash sintering of alumina: effect of different operating conditions on densification. J. Eur. Ceram. Soc. 36, 2535–2542 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.021

    Article  CAS  Google Scholar 

  12. J. Luo, The scientific questions and technological opportunities of flash sintering: from a case study of ZnO to other ceramics. Scr. Mater. 146, 260–266 (2018). https://doi.org/10.1016/j.scriptamat.2017.12.006

    Article  CAS  Google Scholar 

  13. S. Jha, R. Raj, The effect of electric field on sintering and electrical conductivity of titania. J. Am. Ceram. Soc. 8, 1–8 (2013). https://doi.org/10.1111/jace.12682

    Article  CAS  Google Scholar 

  14. A. Gaur, V.M. Sglavo, Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C. J. Mater. Sci. 49, 6321–6332 (2014). https://doi.org/10.1007/s10853-014-8357-2

    Article  CAS  Google Scholar 

  15. A. Gaur, V.M. Sglavo, Flash-sintering of MnCo2O4 and its relation to phase stability. J. Eur. Ceram. Soc. 34, 2391–2400 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.012

    Article  CAS  Google Scholar 

  16. M. Biesuz, S. Grasso, V.M. Sglavo, What’s new in ceramics sintering? A short report on the latest trends and future prospects. Curr. Opin. Solid State Mater. Sci. (2020). https://doi.org/10.1016/j.cossms.2020.100868

    Article  Google Scholar 

  17. M. Biesuz, V.M. Sglavo, Flash sintering of ceramics. J. Eur. Ceram. Soc. 39, 115–143 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.08.048

    Article  CAS  Google Scholar 

  18. I. Reis Lavagnini, J.V. Campos, A.G. Storion, A. de Oliveira Lobo, R. Raj, E. Maria de Jesus Agnolon Pallone, Influence of flash sintering on phase transformation and conductivity of hydroxyapatite. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.12.036

    Article  Google Scholar 

  19. C. Hwang, J. Yun, Flash sintering of hydroxyapatite ceramics. J. Asian Ceram. Soc. 9, 281–288 (2021). https://doi.org/10.1080/21870764.2020.1864899

    Article  Google Scholar 

  20. I. Bajpai, Y.H. Han, J. Yun, J. Francis, S. Kim, R. Raj, Preliminary investigation of hydroxyapatite microstructures prepared by flash sintering. Adv. Appl. Ceram. 115, 276–281 (2016). https://doi.org/10.1080/17436753.2015.1136777

    Article  CAS  Google Scholar 

  21. K.S. Naik, V.M. Sglavo, R. Raj, Field assisted sintering of ceramic constituted by alumina and yttria stabilized zirconia. J. Eur. Ceram. Soc. 34, 2435–2442 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.042

    Article  CAS  Google Scholar 

  22. M. Cologna, J.S.C. Francis, R. Raj, Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J. Eur. Ceram. Soc. 31, 2827–2837 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.07.004

    Article  CAS  Google Scholar 

  23. J.S.C. Francis, R. Raj, Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. J. Am. Ceram. Soc. 96, 2754–2758 (2013). https://doi.org/10.1111/jace.12472

    Article  CAS  Google Scholar 

  24. K.S. Naik, V.M. Sglavo, R. Raj, Flash sintering as a nucleation phenomenon and a model thereof. J. Eur. Ceram. Soc. 34, 4063–4067 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.043

    Article  CAS  Google Scholar 

  25. K. Yamashita, K. Kitagaki, T. Umegaki, Thermal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. J. Am. Ceram. Soc. 78, 1191–1197 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08468.x

    Article  CAS  Google Scholar 

  26. K. Yamashita, H. Owada, H. Nakagawa, T. Umegaki, T. Kanazawa, Trivalent-cation-substituted calcium oxyhydroxyapatite. J. Am. Ceram. Soc. 69, 590–594 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb04813.x

    Article  CAS  Google Scholar 

  27. T. Takahashi, S. Tanase, O. Yamamoto, Electrical conductivity of some hydroxyapatites. Electrochim. Acta. 23, 369–373 (1978). https://doi.org/10.1016/0013-4686(78)80076-0

    Article  CAS  Google Scholar 

  28. J.P. Gittings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 5, 743–54 (2009). https://doi.org/10.1016/j.actbio.2008.08.012

    Article  CAS  Google Scholar 

  29. Y. Liu, Z. Shen, Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering. J. Eur. Ceram. Soc. 32, 2691–2696 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.025

    Article  CAS  Google Scholar 

  30. W. Qin, H. Majidi, J. Yun, K. van Benthem, Electrode effects on microstructure formation during FLASH sintering of yttrium-stabilized zirconia. J. Am. Ceram. Soc. 99, 2253–2259 (2016). https://doi.org/10.1111/jace.14234

    Article  CAS  Google Scholar 

  31. N. Thangamani, K. Chinnakali, F.D. Gnanam, The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite. Ceram. Int. 28, 355–362 (2002). https://doi.org/10.1016/S0272-8842(01)00102-X

    Article  CAS  Google Scholar 

  32. I.R. Gibson, S. Ke, S.M. Best, W. Bonfield, Effect of powder characteristics on the sinterability of hydroxyapatite powders. J. Mater. Sci. Mater. Med. 12, 163–171 (2001). https://doi.org/10.1023/A:1008930313194

    Article  CAS  Google Scholar 

  33. C.M. Roome, C.D. Adam, Crystallite orientation and anisotropic strains in thermally sprayed hydroxyapatite coatings. Biomaterials 16, 691–696 (1995). https://doi.org/10.1016/0142-9612(95)99696-J

    Article  CAS  Google Scholar 

  34. D. Grossin, S. Rollin-Martinet, C. Estournès, F. Rossignol, E. Champion, C. Combes, C. Rey, C. Geoffroy, C. Drouet, Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 6, 577–585 (2010). https://doi.org/10.1016/j.actbio.2009.08.021

    Article  CAS  Google Scholar 

  35. X. Liu, D. He, Z. Zhou, G. Wang, Z. Wang, X. Wu, Z. Tan, Characteristics of (002) oriented hydroxyapatite coatings deposited by atmospheric plasma spraying. Coatings 8, 1–7 (2018). https://doi.org/10.3390/coatings8080258

    Article  CAS  Google Scholar 

  36. H. Akazawa, Y. Ueno, Growth of preferentially c-axis oriented hydroxyapatite thin films on Si(100) substrate by electron-cyclotron-resonance plasma sputtering. Appl. Surf. Sci. 276, 217–222 (2013). https://doi.org/10.1016/j.apsusc.2013.03.070

    Article  CAS  Google Scholar 

  37. M. Hamdi, A. Ide-Ektessabi, Preparation of hydroxyapatite layer by ion beam assisted simultaneous vapor deposition. Surf. Coatings Technol. 163–164, 362–367 (2003). https://doi.org/10.1016/S0257-8972(02)00625-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran S. Naik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, K.S., Satardekar, P.P., Downs, J.A. et al. Understanding the flash sintering behavior for hydroxyapatite. Journal of Materials Research 37, 1030–1036 (2022). https://doi.org/10.1557/s43578-022-00521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00521-5

Navigation