Skip to main content
Log in

Morse-Code inspired architectures for tunable damage tolerance in brittle material systems

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A combination of varying hole and splat morphologies and arrangements were used to construct Morse-Code architectures of dot and dash features in single edge notch bend specimens of PMMA. The crack tip driving force was determined in terms of the normalized energy release rate (G) for these features by finite element simulations. Selected architectures were laser micro-machined and tested. The fracture resistance measured in terms of initiation work of fracture and total work of fracture per unit area from experimental load (P)–crack opening displacement (COD) curves shows that the right combination of these features can provide 20–24 times higher fracture resistance than the bulk solid. While hole-like features led to crack tip blunting, the splat-like feature led to crack deflection. The enhanced damage tolerance in materials containing combination of such features can guide design of architectures in intrinsically porous structures produced by additive or subtractive routes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. H. Herman, S. Sampath, R. McCune, Thermal spray: current status and future trends. MRS Bull. 25, 17–25 (2000). https://doi.org/10.1557/mrs2000.119

    Article  CAS  Google Scholar 

  2. L. JyothishKumar, P.M. Pandey, D.I. Wimpenny, 3D Printing and Additive Manufacturing Technologies (Springer Singapore, Singapore, 2018). https://doi.org/10.1007/978-981-13-0305-0

    Book  Google Scholar 

  3. A. Vackel, T. Nakamura, S. Sampath, Mechanical behavior of spray-coated metallic laminates. J. Therm. Spray Technol. (2016). https://doi.org/10.1007/s11666-016-0404-x

    Article  Google Scholar 

  4. J.R. Davis (ed.), Handbook of Thermal Spray Technology (ASM International, 2004)

  5. A. du Plessis, I. Yadroitsava, I. Yadroitsev, Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights. Mater. Des. 187, 108385 (2020). https://doi.org/10.1016/j.matdes.2019.108385

    Article  CAS  Google Scholar 

  6. G. Dwivedi, K. Flynn, M. Resnick, S. Sampath, A. Gouldstone, Bioinspired hybrid materials from spray-formed ceramic templates. Adv. Mater. 27, 3073–3078 (2015). https://doi.org/10.1002/adma.201500303

    Article  CAS  Google Scholar 

  7. G.K.L. Ng, A.E.W. Jarfors, G. Bi, H.Y. Zheng, Porosity formation and gas bubble retention in laser metal deposition. Appl. Phys. A 97, 641–649 (2009). https://doi.org/10.1007/s00339-009-5266-3

    Article  CAS  Google Scholar 

  8. A. Saboori, M. Toushekhah, A. Aversa, M. Lai, M. Lombardi, S. Biamino, P. Fino, Critical features in the microstructural analysis of AISI 316L produced by metal additive manufacturing. Metallogr. Microstruct. Anal. 9, 92–96 (2020). https://doi.org/10.1007/s13632-019-00604-6

    Article  CAS  Google Scholar 

  9. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, E. Lara-Curzio, Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging. J. Am. Ceram. Soc. 97, 2736–2744 (2014). https://doi.org/10.1111/jace.13021

    Article  CAS  Google Scholar 

  10. D. Lal, P. Kumar, R. Bathe, S. Sampath, V. Jayaram, Effect of microstructure on fracture behavior of freestanding plasma sprayed 7 wt.% Y2O3 stabilized ZrO2. J. Eur. Ceram. Soc. 41, 4294–4301 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.02.038

    Article  CAS  Google Scholar 

  11. K.M. Conway, C. Kunka, B.C. White, G.J. Pataky, B.L. Boyce, Increasing fracture toughness via architected porosity. Mater. Des. 205, 109696 (2021). https://doi.org/10.1016/j.matdes.2021.109696

    Article  CAS  Google Scholar 

  12. Y. Liu, L. St-Pierre, N.A. Fleck, V.S. Deshpande, A. Srivastava, High fracture toughness micro-architectured materials. J. Mech. Phys. Solids 143, 104060 (2020). https://doi.org/10.1016/j.jmps.2020.104060

    Article  Google Scholar 

  13. G. Bullegas, J. Benoliel, P.L. Fenelli, S.T. Pinho, S. Pimenta, Towards quasi isotropic laminates with engineered fracture behaviour for industrial applications. Compos. Sci. Technol. 165, 290–306 (2018). https://doi.org/10.1016/j.compscitech.2018.07.004

    Article  CAS  Google Scholar 

  14. M. Benedetti, V. Fontanari, M. Bandini, F. Zanini, S. Carmignato, Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: mean stress and defect sensitivity. Int. J. Fatigue 107, 96–109 (2018). https://doi.org/10.1016/j.ijfatigue.2017.10.021

    Article  CAS  Google Scholar 

  15. B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/aae10e

    Article  Google Scholar 

  16. P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. Eng. A 598, 327–337 (2014). https://doi.org/10.1016/j.msea.2014.01.041

    Article  CAS  Google Scholar 

  17. T.S. Chaudhari, N.G. Mathews, A.K. Mishra, H.P. Sahasrabuddhe, B.N. Jaya, Energy release rate formulations for non-conventional fracture test geometries. JOM 73, 1597–1606 (2021). https://doi.org/10.1007/s11837-021-04637-7

    Article  Google Scholar 

  18. L.B. Freund, S. Suresh, Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003), pp. 1–820

    Google Scholar 

  19. H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059–1100 (2009). https://doi.org/10.1016/j.pmatsci.2009.05.001

    Article  CAS  Google Scholar 

  20. G. Bullegas, S.T. Pinho, S. Pimenta, Engineering the translaminar fracture behaviour of thin-ply composites. Compos. Sci. Technol. 131, 110–122 (2016). https://doi.org/10.1016/j.compscitech.2016.06.002

    Article  CAS  Google Scholar 

  21. F. Narducci, S.T. Pinho, Exploiting nacre-inspired crack deflection mechanisms in CFRP via micro-structural design. Compos. Sci. Technol. 153, 178–189 (2017). https://doi.org/10.1016/j.compscitech.2017.08.023

    Article  CAS  Google Scholar 

  22. F. Narducci, S.T. Pinho, Interaction between nacre-like CFRP mesolayers and long-fibre interlayers. Compos. Struct. 200, 921–928 (2018). https://doi.org/10.1016/j.compstruct.2018.05.103

    Article  Google Scholar 

  23. F. Narducci, K.Y. Lee, S.T. Pinho, Realising damage-tolerant nacre-inspired CFRP. J. Mech. Phys. Solids 116, 391–402 (2018). https://doi.org/10.1016/j.jmps.2018.04.004

    Article  CAS  Google Scholar 

  24. L. Mencattelli, J. Tang, Y. Swolfs, L. Gorbatikh, S.T. Pinho, Bio-inspired design for enhanced damage tolerance of self-reinforced polypropylene/carbon fibre polypropylene hybrid composites. Compos. A 121, 341–352 (2019). https://doi.org/10.1016/j.compositesa.2019.03.028

    Article  CAS  Google Scholar 

  25. F. Barthelat, Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir. Biomimet. 5, 1–8 (2010). https://doi.org/10.1088/1748-3182/5/3/035001

    Article  CAS  Google Scholar 

  26. A. Shafiei, J.W. Pro, F. Barthelat, Bioinspired buckling of scaled skins. Bioinspir. Biomimet. (2021). https://doi.org/10.1088/1748-3190/abfd7e

    Article  Google Scholar 

  27. C.F. Shih, B. Moran, T. Nakamura, Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79–102 (1986). https://doi.org/10.1007/BF00034019

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Max-Planck Society (17MAX001) for financial support. The authors would like to acknowledge SINE IIT Bombay for providing laser machining facilities to cut PMMA samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balila Nagamani Jaya.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 885 KB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., More, T. & Jaya, B.N. Morse-Code inspired architectures for tunable damage tolerance in brittle material systems. Journal of Materials Research 37, 1201–1215 (2022). https://doi.org/10.1557/s43578-022-00520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00520-6

Keywords

Navigation