Skip to main content

Advertisement

Log in

Investigation on bioactivity, mechanical stability, bactericidal activity and in-vitro biocompatibility of magnesium silicates for bone tissue engineering applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The current work reports the biocompatibility and mechanical stability of enstatite and forsterite bioceramics prepared by sol–gel combustion method. XRD results conferred that enstatite and forsterite phase formation take place at 1000 °C and 900 °C respectively. TEM micrographs indicated the particle size of enstatite in the micron range while forsterite is in the range of 100–200 nm. The FT-IR spectra of forsterite after biomineralization revealed the presence of phosphate and carbonate groups shows apatite deposition ability of forsterite. The slow degradation and better apatite deposition of forsterite resulted in ten folds greater compressive strength than enstatite. Both the bioceramics have shown a remarkable impact on inhibiting the growth of clinical pathogens at a very low concentration. The good hBMSCs attachment and significant proliferation revealed the cytocompatibility of enstatite and forsterite. These observations suggested that magnesium silicate bioceramics can be explored for load-bearing applications, maxillofacial reconstruction and septic arthritis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. J. Gargiuli, A. Gill, G. Lillie, M. Schoenleber, J. Pearson, G. Kyriakou, P. Vadgama, Surfaces and interfaces for biomaterials, (Woodhead publishing, 2005), pp. 103–149.

  2. M. Diba, O.M. Goudouri, F. Tapia, A.R. Boccaccini, Curr. Opin. Solid State Mater. Sci. (2014). https://doi.org/10.1016/j.cossms.2014.02.004

    Article  Google Scholar 

  3. M. Nabiyouni, T. Brückner, H. Zhou, U. Gbureck, S.B. Bhaduri, Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.033

    Article  Google Scholar 

  4. E.M. Bueno, J. Glowacki, Nat Rev Rheumatol. (2009). https://doi.org/10.1038/nrrheum.2009.228

    Article  Google Scholar 

  5. S. Ni, J. Chang, J. Biomater. Appl. (2009). https://doi.org/10.1038/nrrheum.2009.228

    Article  Google Scholar 

  6. D. Goeuriot, J.C. Dubois, D. Merle, F. Thevenot, P. Exbrayat, J. Eur. Ceramic Soc. (1998). https://doi.org/10.1016/S0955-2219(98)00117-4

    Article  Google Scholar 

  7. M. Vallet Regi, A.J. Salinas, J. Roman, M. Gil, J. Mater. Chem. (1999) https://doi.org/10.1039/A808679F

  8. M.A. Naghiu, M. Gorea, F. Kristaly, M. Tomoaia-Cotisel, Ceram. Silik. 58, 303 (2014)

    CAS  Google Scholar 

  9. M.A. Naghiu, M. Gorea, E. Mutch, F. Kristaly, M. Tomoaia-Cotisel, J. Mater. Sci. Technol. (2013). https://doi.org/10.1016/j.jmst.2013.04.007

    Article  Google Scholar 

  10. R. Choudhary, P. Manohar, J. Vecstaudza, M.J. Yáñez-Gascón, H.P. Sánchez, R. Nachimuthu, J. Locs, S. Swamiappan, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.03.308

    Article  Google Scholar 

  11. R. Choudhary, A. Chatterjee, S.K. Venkatraman, S. Koppala, J. Abraham, S. Swamiappan, Bioact. Mater. (2018). https://doi.org/10.1002/jbm.a.36925

    Article  Google Scholar 

  12. R. Choudhary, S.K. Venkatraman, I. Bulygina, F. Senatov, S. Kaloshkin, N. Anisimova, M. Kiselevskiy, M. Knyazeva, D. Kukui, F. Walther, S. Swamiappan, Mater. Sci. Eng. C (2021). https://doi.org/10.1016/j.msec.2020.111456

    Article  Google Scholar 

  13. M. Gorea, M.A. Naghiu, A. Avram, I. Petean, A. Mocanu, M. Tomoaia-Cotisel, Rev. Chim. (2020) https://doi.org/10.37358/RC.20.2.7935

  14. M. Kharaziha, M.H. Fathi, J. Mech. Behav. Biomed. Mater. (2010). https://doi.org/10.1016/j.jmbbm.2010.06.003

    Article  Google Scholar 

  15. R. Lakshmi, R. Choudhary, D. Ponnamma, K.K. Sadasivuni, S. Swamiappan, Bull. Mater. Sci. (2019). https://doi.org/10.1007/s12034-019-1814-4

    Article  Google Scholar 

  16. R. Choudhary, S.K. Venkatraman, I. Bulygina, A. Chatterjee, J. Abraham, F. Senatov, S. Kaloshkin, A. Ilyasov, M. Abakumov, M. Knyazeva, D. Kukui, F. Walther, S. Swamiappan, J. Asian Ceram. Soc. (2020). https://doi.org/10.1080/21870764.2020.1807695

    Article  Google Scholar 

  17. S.K. Venkatraman, S. Swamiappan, Chem. Select (2019). https://doi.org/10.1002/slct.201902780

    Article  Google Scholar 

  18. Z. Wu, K. Zheng, J. Zhang, T. Tang, H. Guo, A.R. Boccaccini, J. Wei, J. Mater. Chem B. (2016). https://doi.org/10.1039/C6TB02429G

    Article  Google Scholar 

  19. X. Jin, J. Chang, W. Zhai, K. Lin, J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2010.04032.x

    Article  Google Scholar 

  20. S. Yamamoto, T. Nonami, H. Hase, N. Kawamura, J. Aust. Ceram. Soc. 48, 180 (2012)

    CAS  Google Scholar 

  21. A. Saberi, Z. Negahdari, B. Alinejad, F. Golestani-Fard, Ceram. Int. 35, 1705 (2009)

    Article  CAS  Google Scholar 

  22. H.B. Bafrooei, T. Ebadzadeh, H. Majidian, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2013.10.025

    Article  Google Scholar 

  23. S. Ni, L. Chou, J. Chang, Ceram. Int. (2007). https://doi.org/10.1016/j.ceramint.2005.07.021

    Article  Google Scholar 

  24. F. Tavangarian, R. Emadi, Mater. Res. Bull. (2010). https://doi.org/10.1016/j.materresbull.2009.12.032

    Article  Google Scholar 

  25. R.Y.S. Zampiva, L.H. Acauan, L.M. Dos Santos, R.H.R. De Castro, A.K. Alves, C.P. Bergmann, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.08.201

    Article  Google Scholar 

  26. S. Ramesh, A. Yaghoubi, K.S. Lee, K.C. Chin, J. Purbolaksono, M. Hamdi, M.A. Hassan, J. Mech. Behav. Biomed. Mater. (2013). https://doi.org/10.1016/j.jmbbm.2013.05.008

    Article  Google Scholar 

  27. P. Ptacek, K. Lang, F. Soukal, T. Opravil, E. Bartonickova, L. Tvrdik, J. Eur. Ceram. Soc. (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.007

    Article  Google Scholar 

  28. A. Goel, D.U. Tulyaganov, E.R. Shaaban, C.S. Knee, S. Eriksson, J.M. Ferreira, Ceram. Int. 35, 1529 (2009)

    Article  CAS  Google Scholar 

  29. T. Van Long, Ceram. Int. (2008). https://doi.org/10.1016/j.ceramint.2007.06.014

    Article  Google Scholar 

  30. L. Lin, Y. Min, S. Chaoshu, Z. Weiping, Y. Baogui, J. Rare. Earth. 24, 104 (2006)

    Article  Google Scholar 

  31. F. Alam, K. Balani, J. Mech. Behav. Biomed. Mater. (2017). https://doi.org/10.1016/j.jmbbm.2016.10.009

    Article  Google Scholar 

  32. S.P. Sawan, G. Manivannan, Antimicrobial/Anti-Infective Materials: Principles and Applications, (CRC Press, Florida), pp. 346.

  33. E. Novitskaya, J.P. Kelly, S.B. Bhaduri, O.A. Graeve, Int. Mater. Rev. (2021). https://doi.org/10.1080/09506608.2020.1765603

    Article  Google Scholar 

  34. A. Trampuz, D.R. Osmon, A.D. Hanssen, J.M. Steckelberg, R. Patel, Clin. Orthop. Relat. Res. (2003). https://doi.org/10.1097/01.blo.0000087324.60612.93

    Article  Google Scholar 

  35. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  Google Scholar 

  36. R.D. Purohit, A.K. Tyagi, J. Mater. Chem. (2002). https://doi.org/10.1039/B103461H

    Article  Google Scholar 

  37. R.B. Rao, H. Singh, Def. Sci. J. 46, 327 (1996)

    Article  Google Scholar 

  38. S. Sasikumar, R. Vijayaraghavan, J. Mater. Sci. Technol. (2010). https://doi.org/10.1016/S1005-0302(11)60010-8

    Article  Google Scholar 

  39. E. Landi, A. Tampieri, M. Mattioli-Belmonte, G. Celotti, M. Sandri, A. Gigante, G. Biagini, J. Eur. Ceram. Soc. 26, 2593 (2006)

    Article  CAS  Google Scholar 

  40. X. Chen, J. Ou, Y. Wei, Z. Huang, Y. Kang, G. Yin, J. Mater. Sci: Mater Med. (2010). https://doi.org/10.1007/s10856-010-4025-5

    Article  Google Scholar 

  41. M. Cerruti, N. Sahai, Rev. Mineral Geochem. (2006). https://doi.org/10.2138/rmg.2006.64.9

    Article  Google Scholar 

  42. G. Krishnamurithy, M.R. Murali, M. Hamdi, A.A. Abbas, H.B. Raghavendran, T. Kamarul, Regen. Med. (2015). https://doi.org/10.2217/rme.15.27

    Article  Google Scholar 

  43. S.M. Best, A.E. Porter, E.S. Thian, J. Huang, J. Eur. Ceram. Soc. (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.001

    Article  Google Scholar 

  44. E.H. Oelkers, in Growth, Dissolution and Pattern Formation in Geosystems, ed. by B. Jamtiveit, P. Meakin, (Springer, Dordrecht), p. 253

  45. T. Wang, Z. Feng, Mater. Lett. (2005). https://doi.org/10.1016/j.matlet.2004.08.048

    Article  Google Scholar 

  46. K.S. Lee, K.C. Chin, S. Ramesh, J. Purbolaksonoa, M.A. Hassan, M. Hamdi, W.D. Teng, J. Ceram. Process. Res. 14, 131 (2013)

    Google Scholar 

  47. F. Liebau, Structural chemistry of silicates: structure, bonding, and classification, (Springer Science & Business Media, Berlin, 2012), p. 278

  48. L.M. Anovitz, A.J. Rondinone, L. Sochalski-Kolbus, J. Rosenqvist, M.C. Cheshire, J. Colloid. Interf. Sci. (2017). https://doi.org/10.1016/j.jcis.2017.01.052

    Article  Google Scholar 

  49. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J. Alvarez, Water Res. (2008). https://doi.org/10.1016/j.watres.2008.08.015

    Article  Google Scholar 

  50. I.S. Kwun, Y.E. Cho, R.A.R. Lomeda, H.I. Shin, J.Y. Choi, Y.H. Kang, J.H. Beattie, Bone (2010). https://doi.org/10.1016/j.bone.2009.11.003

    Article  Google Scholar 

  51. D. Raafat, H.G. Sahl, Microb. Biotechnol. (2009). https://doi.org/10.1111/j.1751-7915.2008.00080.x

    Article  Google Scholar 

  52. I. Rocchietta, M. Simion, M. Hoffmann, D. Trisciuoglio, M. Benigni, C. Dahlin, Clin. Implant. Dent. Relat. Res. (2016). https://doi.org/10.1111/cid.12267

    Article  Google Scholar 

  53. S. Dhivya, A. Keshav Narayan, R. Logith Kumar, S. Viji Chandran, M. Vairamani, N. Selvamurugan, Cell. Proliferat. (2018) https://doi.org/10.1111/cpr.12408

  54. G. Krishnamurithy, S. Mohan, N.A. Mansor, M.R. Murali, H.R.B. Raghavendran, R. Choudhary, S. Swamiappan, T. Kamarul, PLoS One (2019). https://doi.org/10.1371/journal.pone.0214212

    Article  Google Scholar 

  55. D.F. Stroncek, P. Jin, D.H. McKenna, M. Takanashi, M.J. Fontaine, S. Pati, R. Schafer, E. Peterson, E. Benedetti, J.A. Reems, Front. Cell Dev. Biol. (2020). https://doi.org/10.3389/fcell.2020.00458

    Article  Google Scholar 

  56. X. Zhang, C. Zhang, W. Xu, B. Zhong, F. Lin, J. Zhang, Q. Wang, J. Ji, J. Wei, Y. Zhang, Int. J. Nanomed. (2015). https://doi.org/10.2147/IJN.S92598

    Article  Google Scholar 

  57. T. Kokubo, H. Takadama, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Vellore Institute of Technology (VIT) management for the support and CAMPT-VIT for helping with the mechanical studies. The authors also thank DST-FIST for the XRD and SEM-EDX facility. The authors gratefully acknowledge the financial support from the European Union’s Horizon 2020 research and innovation program under the grant agreement No. 857287.The authors would like to express their highest gratitude to Ministry of Higher Education for fundamental research grant scheme (FRGS)—FRGS/1/2016/SKK08/UM/02/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasikumar Swamiappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, S.K., Choudhary, R., Vijayakumar, N. et al. Investigation on bioactivity, mechanical stability, bactericidal activity and in-vitro biocompatibility of magnesium silicates for bone tissue engineering applications. Journal of Materials Research 37, 608–621 (2022). https://doi.org/10.1557/s43578-021-00450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00450-9

Navigation