Skip to main content
Log in

MXene-derived TiO2/MXene-loaded Ag for the degradation of the methyl orange

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The photodegradation technology can improve the status quo of environmental problems seriously which hindered the development and progress of human society. In this work, the two-dimensional transition metal carbide Ti3C2 was prepared by HF etching of Ti3AlC2, and subsequently TiO2 crystals were produced by hydrothermal method to prepare TiO2/Ti3C2 composite. The Ag nanoparticles were then doped by photoreduction to form a ternary Ag/TiO2/Ti3C2 composite. The effect of photocatalytic degradation of the methyl orange solution by Ag/TiO2/Ti3C2 was investigated. The degradation only with Ag/TiO2/Ti3C2 is worser than TiO2/Ti3C2, so H2O2 was added to improve the catalytic ability and explore the photocatalytic mechanism. In 420 min, the degradation efficiency of methyl orange (MO) solution reached 71.09% due to the active-free radicals preventing the recombination of electron hole pairs to improve the catalytic performance of photocatalytic materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Fig. 9

Similar content being viewed by others

References

  1. J. Liu, J. Zhang, J. Tang, L. Pu, Z. Guo, Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance. ES Mater. Manuf. 10, 29–38 (2020)

    CAS  Google Scholar 

  2. Z. Huang, J. Zhou, Y. Zhao, H. Cheng, G. Lu, A.W. Morawski, Y. Yu, Stable core-shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. J. Mater. Res. 36(3), 602–614 (2021)

    Article  CAS  Google Scholar 

  3. J.-S. Wu, C.-H. Liu, K.H. Chu, S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci. 309(1–2), 239–245 (2008)

    Article  CAS  Google Scholar 

  4. J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling. Ultrason. Sonochem. 39, 550–564 (2017)

    Article  CAS  Google Scholar 

  5. N. Kourkoumelis, H. El-Gaoudy, E. Varella, D. Kovala-Demertzi, Physicochemical characterization of thermally aged Egyptian linen dyed with organic natural dyestuffs. Appl. Phys. A 112(2), 469–478 (2013)

    Article  CAS  Google Scholar 

  6. A. Foisal, S.D. Saha, A.S. Khan, M.A. al Noman, Reuse of dye house waste water by reverse osmosis process. J Sci Eng (SEUJSE) 1630, 70–74 (1999)

    Google Scholar 

  7. I. Ali, The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep. Purif. Rev. 39(3–4), 95–171 (2010)

    Article  CAS  Google Scholar 

  8. J. Tang, T. Zhang, Q. Zhang, Z. Duan, Y. Zhu, In-situ growth UiO-66 on Bi2O3 to fabrication p-p heterojunction with enhanced visible-light degradation of tetracycline. J. Solid State Chem. 302, 122353 (2021)

    Article  CAS  Google Scholar 

  9. Y. Gao, J. Zhang, Z. Zhang, Z. Li, Q. Xiong, L. Deng, Q. Zhou, L. Meng, Y. Du, T. Zuo, Plasmon-enhanced Perovskite solar cells with efficiency beyond 21%: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86(2), 291–297 (2021)

    Article  CAS  Google Scholar 

  10. C. Lin, B. Liu, L. Pu, Y. Sun, Y. Xue, M. Chang, X. Li, X. Lu, R. Chen, J. Zhang, Photocatalytic oxidation removal of fluoride ion in wastewater by gC3N4/TiO2 under simulated visible light. Adv. Compos. Hybrid Mater. 4(2), 339–349 (2021)

    Article  CAS  Google Scholar 

  11. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li, H. Li, GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J. Mater. Res. 35(10), 1307–1315 (2020)

    Article  CAS  Google Scholar 

  12. J. Tang, T. Zhang, Z. Duan, C.W. Li, Y. Zhu, Synthesis of Bi2O3@BiOI@UiO-66 composites with enhanced photocatalytic activity under visible light. Chem. Phys. Lett. 768, 138354 (2021)

    Article  CAS  Google Scholar 

  13. M. Liu, Q. Meng, Z. Yang, X. Zhao, T. Liu, Ultra-long-term cycling stability of an integrated carbon-sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54(40), 5090–5093 (2018)

    Article  CAS  Google Scholar 

  14. Y. Ke, H. Guo, D. Wang, J. Chen, W. Weng, ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation. J. Mater. Res. 29(20), 2473–2482 (2014)

    Article  CAS  Google Scholar 

  15. C. Lou, T. Jing, J. Tian, Y. Zheng, J. Zhang, M. Dong, C. Wang, C. Hou, J. Fan, Z. Guo, 3-Dimensional graphene/Cu/Fe3O4 composites: immobilized laccase electrodes for detecting bisphenol A. J. Mater. Res. 34(17), 2964–2975 (2019)

    Article  CAS  Google Scholar 

  16. A. Meng, L. Zhang, B. Cheng, J. Yu, Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 31(30), 1807660 (2019)

    Article  Google Scholar 

  17. X. Song, W. Li, D. He, H. Wu, Z. Ke, C. Jiang, G. Wang, X. Xiao, The “midas touch” transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/nitrogen coimplantation. Adv. Energy Mater. 8(20), 1800165 (2018)

    Article  Google Scholar 

  18. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science (New York, N.Y.) 293(5528), 269–271 (2001)

    Article  CAS  Google Scholar 

  19. X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018–5019 (2008)

    Article  CAS  Google Scholar 

  20. J. Tian, Q. Shao, J. Zhao, D. Pan, M. Dong, C. Jia, T. Ding, T. Wu, Z. Guo, Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J. Colloid Interface Sci. 541, 18–29 (2019)

    Article  CAS  Google Scholar 

  21. L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, Z. Guo, Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164(14), H1086–H1090 (2017)

    Article  CAS  Google Scholar 

  22. W. Wang, M.O. Tade, Z. Shao, Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog. Mater. Sci. 92, 33–63 (2018)

    Article  Google Scholar 

  23. G.K.Q. Ganharul, A. Tofanello, A. Bonadio, A.L.M. Freitas, M.T. Escote, A.S. Polo, I.L. Nantes-Cardoso, J.A. Souza, Disclosing the hidden presence of Ti3+ ions in different TiO2 crystal structures synthesized at low temperature and photocatalytic evaluation by methylene blue photobleaching. J. Mater. Res. 36(16), 3353–3365 (2021)

    Article  CAS  Google Scholar 

  24. L.J. Zhu, X.X. Zhu, C. Zhang, T. Huo, X.L. Hou, D.D. Guo, H.M. Zhang, D.H. Xia, Enhanced visible-light catalytic degradation of methylene blue by improving adsorption of porous zirconium-based porphyrin MOFs sensitized TiO2 photocatalyst. J. Mater. Res. 36, 2961–2972 (2021)

    Article  CAS  Google Scholar 

  25. S. Fu, Y. He, Q. Wu, Y. Wu, T. Wu, Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31(15), 2252–2260 (2016)

    Article  CAS  Google Scholar 

  26. Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao, Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)

    Article  CAS  Google Scholar 

  27. A. Sreedhar, J.-S. Noh, Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: a review. Sol. Energy 222, 48–73 (2021)

    Article  CAS  Google Scholar 

  28. C.C. Mayorga-Martinez, J. Vyskocil, F. Novotny, M. Pumera, Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A 9(26), 14904–14910 (2021)

    Article  CAS  Google Scholar 

  29. T. Wojciechowski, A. Rozmyslowska-Wojciechowska, G. Matyszczak, M. Wrzecionek, A. Olszyna, A. Peter, A. Mihaly-Cozmuta, C. Nicula, L. Mihaly-Cozmuta, S. Podsiadlo, D. Basiak, W. Ziemkowska, A. Jastrzebska, Ti2C MXene modified with ceramic oxide and noble metal nanoparticles: synthesis, morphostructural properties, and high photocatalytic activity. Inorg. Chem. 58(11), 7602–7614 (2019)

    Article  CAS  Google Scholar 

  30. L. Zhang, P. Ma, L. Dai, S. Li, W. Yu, J. Guan, In situ crystallization and growth of TiO2 nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catal. Sci. Technol. 11(11), 3834–3844 (2021)

    Article  CAS  Google Scholar 

  31. F. Liu, A. Zhou, J. Chen, L. Wang, H. Zhang, Q. Hu, Safe synthesis and adsorption/catalysis application of two-dimensional structure MXene. Ordnance Mater. Sci. Eng. 39(1), 120–124 (2016)

    CAS  Google Scholar 

  32. Z. Xiao, S. Ruan, L.B. Kong, W. Que, K. Zhou, Y. Liu, T. Zhang, Synthesis and Properties of MXenes, MXenes and MXenes-Based Composites (Springer, Cham, 2020), pp. 5–93

    Book  Google Scholar 

  33. J. Zhang, J. Xi, Z. Ji, Mo+ N codoped TiO2 sheets with dominant 001 facets for enhancing visible-light photocatalytic activity. J. Mater. Chem. 22(34), 17700–17708 (2012)

    Article  CAS  Google Scholar 

  34. L. Chen, K. Huang, Q. Xie, S.M. Lam, J.C. Sin, T. Su, H. Ji, Z. Qin, The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal. Sci. Technol. 11(4), 1602–1614 (2021)

    Article  CAS  Google Scholar 

  35. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2(3), 637–644 (2014)

    Article  CAS  Google Scholar 

  36. Y.V. Kolen’ko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, J. Frantti, O.I. Lebedev, B.R. Churagulov, G. Van Tendeloo, M. Yoshimura, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J. Phys. Chem. B 110(9), 4030–4038 (2006)

    Article  CAS  Google Scholar 

  37. A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020)

    Article  CAS  Google Scholar 

  38. U. Holzwarth, N. Gibson, The Scherrer equation versus the “Debye-Scherrer equation.” Nat. Nanotechnol. 6(9), 534–534 (2011)

    Article  CAS  Google Scholar 

  39. G. Casasanta, R. Garra, Towards a generalized beer-lambert law. Fractal Fract. 2(1), 8 (2018)

    Article  Google Scholar 

  40. J. Zhang, H. Liu, B. Wang, M. Thabit, H. Bai, Preparation of Pd/GO/Ti electrode and its electrochemical degradation for 2, 4-dichlorophenol. Mater. Des. 86, 664–669 (2015)

    Article  CAS  Google Scholar 

  41. C. Lin, Z. Qiao, J. Zhang, J. Tang, Z. Guo, Highly efficient fluoride adsorption in domestic water with RGO/Ag nanomaterials. ES Energy Environ. 4, 27–33 (2019)

    Google Scholar 

  42. D. Saha, M.M. Desipio, T.J. Hoinkis, E.J. Smeltz, R. Thorpe, D.K. Hensley, S.G. Fischer-Drowos, J. Chen, Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: an insight into reaction intermediates. J. Environ. Chem. Eng. 6(4), 4927–4936 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the supports from the project that was supported the Key Laboratory of High-tech Research on Marine Functional Thin Film Materials in Zhenjiang (ZHZ2019008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yamei Zhang or Jiaoxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Jiresse, N.K.L., Zhang, W. et al. MXene-derived TiO2/MXene-loaded Ag for the degradation of the methyl orange. Journal of Materials Research 36, 5002–5012 (2021). https://doi.org/10.1557/s43578-021-00428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00428-7

Navigation