Skip to main content

Advertisement

Log in

A simple and efficient method to prepare exfoliated and reduced graphene nanosheets by vacuum oven

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report fabrication of reduced graphene oxides (RGO) papers using thermal reduction by vacuum-assisted for thermal exfoliation and in situ reduction of graphene oxide (GO) at temperatures as low as 180 °C. The conjugated sp2-carbon structure of GO was restored throughout the reduction process, and the thermal stability of the RGO papers was substantially better than that of the GO paper, according to Raman analysis and thermogravimetry analysis (TGA). The RGO paper that was reduced for 24 h exhibited the highest electrical conductivity of (29.3 ± 0.4) × 103 S m−1 at 180 °C. As the reduction degree of the RGO paper deepens, the thickness of the sample gradually decreases, indicating that the conduction type of RGO paper can be controlled by regulating the reduction degree. Thus, we demonstrate a simplified fabrication way for flexible conducting RGO paper of significant application potential as electrodes in a variety of devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figue 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. S.H. Huh, Thermal reduction of graphene oxide, in Physics and Applications of Graphene-Experiments. ed. by S. Mikhailov (Intech, London, 2011), pp. 73–90

    Google Scholar 

  2. C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014)

    Article  CAS  Google Scholar 

  3. M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. HerreraAlonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of gaphite. Chem. Mater. 19(18), 4396–4404 (2007)

    Article  CAS  Google Scholar 

  4. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011)

    Article  CAS  Google Scholar 

  5. H.J. Han, Y.N. Chen, Z.J. Wang, Effect of microwave irradiation on reduction of graphene oxide films. Rsc Adv. 5, 92940–92946 (2015)

    Article  CAS  Google Scholar 

  6. R. Ming, P. Zhang, X. He, J. Feng, Y. Ding, F. Chang, C. Wang, Humidity dependant compression properties of graphene oxide foams prepared by freeze-drying technique. Micro Nano Lett. 8(2), 66–67 (2013)

    Article  CAS  Google Scholar 

  7. G.B. Olowojoba, S. Eslava, E.S. Gutierrez, A.J. Kinloch, C. Mattevi, V.G. Rocha, A.C. Taylor, In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Appl. Nanosci. 6(7), 1015–1022 (2016)

    Article  CAS  Google Scholar 

  8. Y. Guo, C. Bao, L. Song, B. Yuan, Y. Hu, In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind. Eng. Chem. Res. 50(13), 7772–7783 (2011)

    Article  CAS  Google Scholar 

  9. J. Liu, J. Tang, J.J. Gooding, Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 22(25), 12435 (2012)

    Article  CAS  Google Scholar 

  10. K.N. Kudin, B. Ozbas, H.C. Schniepp, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)

    Article  CAS  Google Scholar 

  11. H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)

    Article  CAS  Google Scholar 

  12. N. Zhao, C.Y. Wen, D.W. Zhang, D.P. Wu, Z.B. Zhang, S.L. Zhang, Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide. Chin. Phys. B 23, 128101 (2014)

    Article  Google Scholar 

  13. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023 (2011)

    Article  CAS  Google Scholar 

  14. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, I.A. Aksay et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)

    Article  CAS  Google Scholar 

  15. L.-C. Tang, X. Wang, L.-X. Gong, K. Peng, L. Zhao, Q. Chen, L.-B. Wu, J.-X. Jiang, G.-Q. Lai, Creep and recovery of polystyrene composites filled with graphene additives. Compos. Sci. Technol. 91, 63–70 (2014)

    Article  CAS  Google Scholar 

  16. T.K. Bindhu, A.B. Nair, B.T. Abraham, P.M.S. Beegum, E.T. Thachil, Microwave exfoliated reduced graphene oxide epoxy nanocomposites for high performance applications. Polymer 55(16), 3614–3627 (2014)

    Article  Google Scholar 

  17. S.A. El-Khodary, G.M. El-Enany, M. El-Okr, M. Ibrahim, Preparation and characterization of microwave reduced graphite oxide for high-performance supercapacitors. Electrochim. Acta 150, 269–278 (2014)

    Article  CAS  Google Scholar 

  18. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    Article  CAS  Google Scholar 

  19. P. Sheath, M. Majumder, Flux accentuation and improved rejection in graphene-based filtration membranes produced by capillary-force-assisted self-assembly. Philos. Trans. R. Soc. A 374(2060), 20150028 (2015)

    Article  Google Scholar 

  20. M. Tortello, S. Colonna, M. Bernal, J. Gomez, M. Pavese, C. Novara, F. Giorgis, M. Maggio, G. Guerra, Effect of thermal annealing on the heat transfer properties of reduced graphite oxide flakes: a nanoscale characterization via scanning thermal microscopy. Carbon 109, 390–401 (2016)

    Article  CAS  Google Scholar 

  21. J.-J. Shao, W. Lv, Q.-H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014)

    Article  CAS  Google Scholar 

  22. W. Feng, M. Qin, Y. Feng, Toward highly thermally conductive all-carbon composites: structure control. Carbon 109, 575–597 (2016)

    Article  CAS  Google Scholar 

  23. J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A.A. Balandin et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Func. Mater. 25(29), 4664–4672 (2015)

    Article  CAS  Google Scholar 

  24. C. Vallés, J. David Núñez, A.M. Benito, W.K. Maser, Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50(3), 835–844 (2012)

    Article  Google Scholar 

  25. M. Mozetič, K. Ostrikov, D.N. Ruzic, D. Curreli, U. Cvelbar, A. Vesel, G. Primc, M. Leisch, K. Jousten, O.B. Malyshev et al., Recent advances in vacuum sciences and applications. J. Phys. D 47(15), 153001 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The Authors would like to extend their science appreciation to the Ministry of Higher Education in Saudi Arabia for funding this work. The support from The University of Sheffield is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alzahrany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrany, A., Rehman, I.U. A simple and efficient method to prepare exfoliated and reduced graphene nanosheets by vacuum oven. Journal of Materials Research 36, 3031–3040 (2021). https://doi.org/10.1557/s43578-021-00294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00294-3

Keywords

Navigation