Skip to main content
Log in

Facile synthesize of free standing highly conducting flexible reduced graphene oxide paper

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a facile fabrication of free standing, highly conducting flexible reduced graphene oxide (rGO) paper by an evaporation-induced self-assembly process. The impact of heat treatment conditions on the structural, mechanical and electrical properties of rGO paper has been investigated. The effect of annealing temperature on the structural variations of GO (graphene oxide) and rGO papers was confirmed by X-ray diffraction studies. The removal of oxygen and other functional groups from the GO paper by heat-treatment process was confirmed using FTIR analysis. Raman spectra confirmed the effective control of defects in rGO paper by means of heat-treatment, which has also been inferred from the Raman mapping analysis. The morphology of rGO paper studied by FESEM emphasized the stacking of rGO layers. The electrical conductivity was significantly enhanced for 400 °C heat-treated rGO paper (4.82 × 103 S/cm) compared to the as-prepared GO paper (7 × 10−3 S/cm). The tensile strength of the rGO paper was also relatively higher than that of GO paper. The experimental results demonstrated that the present approach is simple and reducing agent free green approach for preparing large-area rGO paper with high electrical conductivity and mechanical flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  2. S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006)

    Article  Google Scholar 

  3. J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, P. Sheehan, B.H. Houston, Nano Lett. 8, 3441 (2008)

    Article  Google Scholar 

  4. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)

    Article  Google Scholar 

  5. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007)

    Article  Google Scholar 

  6. O. Akhavan, Carbon 48, 509 (2010)

    Article  Google Scholar 

  7. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.D. Dommett, G. Evmenenko, S. Wu, S. Chen, C. Liu, S.T. Nguyen, R.S. Ruoff, Nano Lett. 7, 1888 (2007)

    Article  Google Scholar 

  8. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Pnomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Nano Lett. 8, 1704 (2008)

    Article  Google Scholar 

  9. V. Lee, L. Whittaker, C. Jaye, K.M. Baroudi, D.A. Fischer, S. Banerjee, Chem. Mater. 21, 3905 (2009)

    Article  Google Scholar 

  10. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff, Chem. Mater. 20, 6592 (2008)

    Article  Google Scholar 

  11. Y.M. Shulga, S.A. Baskakov, E.I. Knerelman, G.I. Davidova, E.R. Badamshina, N.Y. Shulga, E.A. Skryleva, A.L. Agapov, D.N. Voylov, A.P. Sokolov, V.M. Martynenko, RSC Adv. 4, 587 (2014)

    Article  Google Scholar 

  12. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 3, 538 (2008)

    Article  Google Scholar 

  13. Q. Liu, M. He, X. Xu, L. Zhang, J. Yu, New J. Chem. 3, 7181 (2013)

    Google Scholar 

  14. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745 (2009)

    Article  Google Scholar 

  15. M.A. Pimnta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Article  Google Scholar 

  16. T.Y. Kim, H. Kim, S.W. Kwon, Y. Kim, W.K. Park, D.H. Yoon, A.R. Jang, H.S. Shin, K.S. Suh, W.S. Yang, Nano Lett. 12, 743 (2012)

    Article  Google Scholar 

  17. C.R. Herron, K.S. Coleman, R.S. Edwards, B.G. Mendis, J. Mater. Chem. 21, 3378 (2011)

    Article  Google Scholar 

  18. W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai, G. Shi, Sci. Rep. 3, 2248 (2013)

    Google Scholar 

  19. M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, J. Phys. Chem. C 115, 19761 (2011)

    Article  Google Scholar 

  20. S. Pei, H.M. Cheng, Carbon 50, 3210 (2012)

    Article  Google Scholar 

  21. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131, 15939 (2009)

    Article  Google Scholar 

  22. S.J. Wang, Y. Geng, Q. Zheng, J.K. Kim, Carbon 48, 1815 (2010)

    Article  Google Scholar 

  23. O.C. Compton, D.A. Dikin, K.W. Putz, L.C. Brinson, S.T. Nguyen, Adv. Mater. 22, 892 (2010)

    Article  Google Scholar 

  24. H. Wang, X. Wang, X. Li, H. Dai, Nano Res. 2, 336 (2009)

    Article  Google Scholar 

  25. N. Hu, L. Meng, R. Gao, Y. Wang, J. Chai, Z. Yang, E.S.W. Kong, Y. Zhang, Nano-Micro Lett. 3, 215 (2011)

    Article  Google Scholar 

  26. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater. 11, 771 (1999)

    Article  Google Scholar 

  27. L.H. Liu, M.A. Yan, Nano Lett. 9, 3375 (2009)

    Article  Google Scholar 

  28. X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y.W. Mai, J.K. Kim, ACS Nano 6, 10708 (2012)

    Article  Google Scholar 

  29. X. Zhang, A.C. Coleman, N. Katsonis, W.R. Browne, B.J. van Wees, B.L. Feringa, Chem. Commun. 46, 7539 (2010)

    Article  Google Scholar 

  30. Y. Lin, G.J. Ehlert, C. Bukowsky, H.A. Sodana, A.C.S. Appl, Mater. Interfaces 3, 2200 (2011)

    Article  Google Scholar 

  31. T.V. Khai, H.G. Na, D.S. Kwak, Y.J. Kwon, H. Ham, K.B. Shim, H.W. Kim, J. Mater. Chem. 22, 17992 (2012)

    Article  Google Scholar 

  32. A. Sasaki, A. Himeda, H. Konaka, N. Muroyama, Rigaku J. 26, 23 (2010)

    Google Scholar 

  33. Z.F. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q.W. Shi, J. Chen, Phys. Rev. B 75, 113406 (2007)

    Article  Google Scholar 

  34. S. Koda, Prog. Energy Combust. Sci. 18, 513 (1992)

    Article  Google Scholar 

  35. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  36. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009)

    Article  Google Scholar 

  37. C.M. Chen, J.Q. Huang, Q. Zhang, W.Z. Gong, Q.H. Yang, M.Z. Wang, Y.G. Yang, Carbon 50, 659 (2012)

    Article  Google Scholar 

  38. N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif, J.K. Kim, J. Mater. Chem. 22, 12709 (2012)

    Article  Google Scholar 

  39. D. Kim, S. Sinha-Ray, J. Park, J. Lee, Y. Cha, S. Bae, J. Ah, Y.C. Jung, S.M. Kim, A.L. Yarin, S.S. Yoon, Adv. Funct. Mater. 24, 4986 (2014)

    Article  Google Scholar 

  40. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotech. 4, 25 (2009)

    Article  Google Scholar 

  41. Z. Lin, G.H. Waller, Y. Liu, M. Liu, C. Wong, Nano Energy 2, 241 (2013)

    Article  Google Scholar 

  42. M.B. Dowell, R.A. Howard, Carbon 24, 311 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by King Saud University, Saudi Arabia under the Deanship of Scientific Research, College of Science. One of the authors (D. Selvakumar) would like to thank the Council of Scientific and Industrial Research (CSIR), Government of India for the award of Senior Research Fellowship (SRF) to carry out this research work. The authors would like to thank Dr. L. Saravanan, Postdoctoral Researcher, Tunghai University, Taiwan for FESEM and Raman analysis. We also thank the Department of Textile Technology for extending the mechanical characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Jayavel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, D., Sivaram, H., Alsalme, A. et al. Facile synthesize of free standing highly conducting flexible reduced graphene oxide paper. J Mater Sci: Mater Electron 27, 6232–6241 (2016). https://doi.org/10.1007/s10854-016-4554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4554-x

Keywords

Navigation