Skip to main content
Log in

Enhanced Conductivity and Flexibility in Reduced Graphene Oxide Paper by Combined Chemical-Thermal Reduction

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Free-standing reduced graphene oxide (rGO) papers were prepared by chemical reduction, thermal reduction and combined chemical-thermal reduction, respectively. Four-point probe and nanoindentation experiments were conducted to investigate the electrical and mechanical properties of rGO papers. The rGO paper prepared by soaking in L-ascorbic acid and thermal annealing in argon at 1000 °C (labeled rGO-AsA-T) showed superior electrical and mechanical properties when compared with rGO papers prepared merely by chemical reduction or thermal reduction. The as-prepared rGO-AsA-T paper exhibited an electrical conductivity of 5.7 × 104 S/m, showing an increase of 90% compared to that in the thermally annealed rGO paper and nearly 40 times that of rGO paper reduced by L-ascorbic acid. It was also found that the rGO-AsA-T paper had the lowest elastic modulus of 288 MPa, showing enhanced flexibility. The nearly free voids in rGO-AsA-T paper proved by scanning electron microscopy (SEM) were due to the capillary action in chemical reduction and were significant in improving the electrical conductivity and flexibility of the paper. The rGO-AsA-T paper with high conductivity and flexibility has a promising application in flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Wu, Y. Xu, H. Wang, Z. Sun, and L. Zou, Carbon 171, 639 (2021).

    Article  CAS  Google Scholar 

  2. D.G. Papageorgiou, I.A. Kinloch, and R.J. Young, Prog. Mater. Sci. 90, 75 (2017).

    Article  CAS  Google Scholar 

  3. A. Ambrosetti, and P.L. Silvestrelli, J. Phys. Chem. Lett. 11, 2737 (2020).

    Article  CAS  Google Scholar 

  4. Q.Q. Xiong, and Z.G. Ji, J. Alloys Compd 673, 215 (2016).

    Article  CAS  Google Scholar 

  5. Z.F. Zhao, X.J. Teng, Q.Q. Xiong, H.Z. Chi, Y.J. Yuan, H.Y. Qin, and Z.G. Ji, Sustain. Mater. Technol 29, e00313 (2021).

    CAS  Google Scholar 

  6. Y.W. Zhang, Y.K. Wu, W. Zhong, F.Y. Xiao, M.K. Aslam, X. Zhang, and M.W. Xu, Chemsuschem 14, 1336 (2021).

    Article  CAS  Google Scholar 

  7. Y.Y. Shi, G.J. Liu, R.C. Jin, H. Xu, Q.Y. Wang, and S.M. Gao, Carbon Energy 1, 253 (2019).

    Article  CAS  Google Scholar 

  8. Y. Lin, G. Hou, S. Bi, X. Su, and H. Li, Funct. Mater Lett. 11, 2051024 (2020).

    Article  Google Scholar 

  9. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, and R.S. Ruoff, Nature 448, 457 (2015).

    Article  Google Scholar 

  10. M. Wang, L.D. Duong, J.S. Oh, N.T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, and J.D. Nam, ACS Appl. Mater. Interfaces 6, 1747 (2014).

    Article  CAS  Google Scholar 

  11. P. Kumar, U.N. Maiti, K.E. Lee, and S.O. Kim, Carbon 80, 453 (2014).

    Article  CAS  Google Scholar 

  12. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 906 (2010).

    Google Scholar 

  13. H.X. Wang, and Y. Cui, Carbon Energy 1, 13 (2019).

    Article  Google Scholar 

  14. H.F. Lu, J. Zhang, J. Luo, W.B. Gong, C.W. Li, Q.L. Li, K. Zhang, and M. Hu, Compos. Pt A-Appl. Sci. Manuf. 102, 1 (2017).

    Article  CAS  Google Scholar 

  15. L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, and C. Gao, Adv. Mater. 29, 1700589 (2017).

    Article  Google Scholar 

  16. L. Dong, C. Hu, L. Song, X. Huang, N. Chen, and L. Qu, Adv. Funct. Mater. 26, 1470 (2016).

    Article  CAS  Google Scholar 

  17. G.Q. Chen, B.H. Yuan, Y.Y. Zhan, H.M. Dai, S. He, and X.F. Chen, Mater. Chem. Phys. 252, 123292 (2020).

    Article  CAS  Google Scholar 

  18. J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A.I. Cocemasov, D.L. Nika, and A.A. Balandin, Adv. Funct. Mater. 25, 4664 (2015).

    Article  CAS  Google Scholar 

  19. S. Pei, J. Zhao, J. Du, W. Ren, and H.M. Cheng, Carbon 48, 4466 (2010).

    Article  CAS  Google Scholar 

  20. S.H. Shen, R.F. Zhou, Y.H. Li, B. Liu, G.X. Pan, Q. Liu, Q.Q. Xiong, X.L. Wang, X.H. Xia, and J.P. Tu, Small Methods 3, 1900596 (2019).

    Article  CAS  Google Scholar 

  21. X. Chen, L. Wei, L. Da, H. Ming, X. Wu, H. Yuan, H.L. Sun, C. Xiong, and R.S. Ruoff, ACS Nano 11, 665 (2017).

    Article  CAS  Google Scholar 

  22. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Prog. Mater. Sci. 57, 1061 (2012).

    Article  CAS  Google Scholar 

  23. A. Mehmood, N.M. Mubarak, M. Khalid, R. Walvekar, and S. Mazari, J. Environ. Chem. Eng. 8, 103743 (2020).

    Article  CAS  Google Scholar 

  24. P. Goli, H. Ning, X. Li, C.Y. Lu, and A.A. Balandin, Nano Lett. 14, 1497 (2014).

    Article  CAS  Google Scholar 

  25. J. Ding, H. Zhao, Q. Wang, H. Dou, H. Chen, and H. Yu, Nanoscale 9, 16871 (2017).

    Article  CAS  Google Scholar 

  26. X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y.W. Mai, and J.K. Kim, ACS Nano 6, 10708 (2012).

    Article  CAS  Google Scholar 

  27. C. Vallés, J.D. Nú Ez, and A.M. Benito, Carbon 50, 835 (2012).

    Article  Google Scholar 

  28. X.J. Chen, D.L. Meng, B. Wang, B.W. Li, W. Li, C.W. Bielawski, and R.S. Ruoff, Carbon 101, 71 (2016).

    Article  CAS  Google Scholar 

  29. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, and R.S. Ruoff, Science 332, 1537 (2011).

    Article  CAS  Google Scholar 

  30. W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  31. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  32. T.D. Le, G.N. Yong, and H. Seo, Sens. Actuator B-Chem 334, 129676 (2021).

    Article  Google Scholar 

  33. Y. Zhang, X.H. Xia, B. Liu, S.J. Deng, D. Xie, Q. Liu, Y.D. Wang, J.B. Wu, X.L. Wang, and J.P. Tu, Adv. Energy Mater 9, 1803342 (2019).

    Article  Google Scholar 

  34. J. Zhang, H. Yang, G. Shen, C. Ping, and S. Guo, Chem. Commun. 46, 1112 (2010).

    Article  CAS  Google Scholar 

  35. X.J. Chen, X.M. Deng, N. Yeon, Y. Huang, L. Peng, M. Huang, X. Zhang, X. Chen, D. Luo, B. Wang, X.Z. Wu, Y.F. Ma, Z. Lee, R.S. Ruoff et al., Carbon 132, 294 (2018).

    Article  CAS  Google Scholar 

  36. A.R. Ranjbartoreh, B. Wang, X.P. Shen, and G.X. Wang, J. Appl. Phys. 109, 666 (2011).

    Article  Google Scholar 

  37. L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, and T.L. Ren, ACS Nano 11, 8790 (2017).

    Article  CAS  Google Scholar 

  38. P. Li, L. Zhao, Z. Jiang, M. Yu, and Y. Zhao, Sci. Rep. 9, 1 (2019).

    Google Scholar 

  39. Y. Zhang, and C. Pan, Diam Relat. Mater. 24, 1 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (61774084), by the Priority Academic Program Development of Jiangsu Higher Education Institutions, by the special fund of Jiangsu Province for the transformation of scientific and technological achievements (BA2019047), the open project of Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology (XCA20013-3) and by funding of Jiangsu Innovation Program for Graduate Education (KYCX19_0175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglie Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shen, H., Yang, J. et al. Enhanced Conductivity and Flexibility in Reduced Graphene Oxide Paper by Combined Chemical-Thermal Reduction. J. Electron. Mater. 50, 6991–6999 (2021). https://doi.org/10.1007/s11664-021-09201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09201-2

Keywords

Navigation